【題目】如圖,在平行四邊形中,,,,點是折線上的一個動點(不與、重合).則的面積的最大值是(  )

A.B.1C.D.

【答案】D

【解析】

分三種情況討論:①當點EBC上時,高一定,底邊BE最大時面積最大;②當ECD上時,△ABE的面積不變;③當EAD上時,ED重合時,△ABE的面積最大,根據(jù)三角形的面積公式可得結論.

解:分三種情況:
①當點EBC上時,EC重合時,△ABE的面積最大,如圖1

AAFBCF,
∵四邊形ABCD是平行四邊形,
ABCD,
∴∠C+B=180°,
∵∠C=120°,
∴∠B=60°,
RtABF中,∠BAF=30°,
BF=AB=1,AF=
∴此時△ABE的最大面積為:×4×=2;
②當ECD上時,如圖2,此時,△ABE的面積=SABCD=×4×=2;

③當EAD上時,ED重合時,△ABE的面積最大,此時,△ABE的面積=2
綜上,△ABE的面積的最大值是2;
故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)是一個長為2m,寬為2n的長方形,沿圖中虛線剪成四個均勻的小長方形,然后按圖(2)形狀拼成一個正方形.

(1)你認為圖(2)中的陰影部分的正方形的邊長等于多少?

(2)觀察圖(2),你能寫出下列三個代數(shù)式之間的等量關系嗎?代數(shù)式:,,;

(3)已知:,,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,ABC+∠ADC=120°,將一透明三角板60°角的頂點落在點A上,并繞著點A旋轉,三角板的兩邊分別交BC、CD于點E、F

1)如圖1,求BAD的度數(shù);

2)如圖2,求證:BE+DF=AB;

3)如圖3,在(2)的條件下,取AB中點G,作等邊EGH,連接AH,延長GH剛好與平行四邊形ABCD交于點D,若AHAB,EGH的面積為.求DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D.

(1)求證:AC平分∠DAB;

(2)求證:AC2=ADAB;

(3)若AD=,sinB=,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為 2a 的等邊△ABC 中,M 是高 CH 所在直線上的一個動點, 連接 BM,將線段 BM 繞點 B 逆時針旋轉 60°得到 BN,連接 HN,則在點 M 運動的過程中,線段 BN 長度的最小值為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8分)某市在道路改造過程中,需要鋪設一條長為1000米的管道,決定由甲、乙兩個工程隊來完成這一工程.已知甲工程隊比乙工程隊每天能多鋪設20米,且甲工程隊鋪設350米所用的天數(shù)與乙工程隊鋪設250米所用的天數(shù)相同.

(1)甲、乙工程隊每天各能鋪設多少米?

(2)如果要求完成該項工程的工期不超過10天,那么為兩工程隊分配工程量(以百米為單位)的方案有幾種?請你幫助設計出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有3個完全相同的小球,把它們分別標號為1,2,3,放在一個口袋中,隨機地摸出一個小球不放回,再隨機地摸出一個小球.

(1) 采用樹形圖法(或列表法)列出兩次摸球出現(xiàn)的所有可能結果;

(2) 求摸出的兩個球號碼之和等于5的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)積極創(chuàng)建環(huán)保示范社區(qū),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,已知溫馨提示牌的單價為每個30元,垃圾箱的單價為每個90元,共需購買溫馨提示牌和垃圾箱共100個.

(1)若規(guī)定溫馨提示牌和垃圾箱的個數(shù)之比為1:4,求所需的購買費用;

(2)若該小區(qū)至多安放48個溫馨提示牌,且費用不超過6300元,請列舉所有購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年2月16日,由著名導演林超賢的電影《紅海行動》在各大影院上映后,好評不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用摸球的辦法決定誰去看電影,規(guī)則如下:在一個不透明的袋子中裝有編號1~4的四個球(除編號外都相同),從中隨機摸出一個球,記下數(shù)字后放回,再從中摸出一個球,記下數(shù)字,若兩次數(shù)字之和大于5,則小亮獲勝,若兩次數(shù)字之和小于5,則小麗獲勝.

(1)請用列表或畫樹狀圖的方法表示出兩數(shù)和的所有可能的結果;

(2)分別求出小亮和小麗獲勝的概率.

查看答案和解析>>

同步練習冊答案