【題目】如圖,在△ABC中,AB=4 cm,AC=2 cm

(1)AB上取一點(diǎn)DD不與AB重合),當(dāng)AD=_________cm時(shí),△ACD∽△ABC

(2)AC的延長(zhǎng)線上取一點(diǎn)E,當(dāng)CE=________cm時(shí),△AEB∽△ABC此時(shí)BEDC有怎樣的位置關(guān)系?為什么?

【答案】(1)1; (2)6.

【解析】(1)如圖,∵∠A=∠A,∴當(dāng)AD:AC=AC:AB時(shí),△ACD∽△ABC.

AD:AC=AC:AB可得:AD·AB=AC2,∵AC=2,AB=4,∴解得AD=1,即當(dāng)AD=1時(shí),AD:AC=AC:AB;

(2)如圖,∵∠A=∠A,∴當(dāng)AE:AB=AB:AC時(shí),△AEB∽△ABC.

AE:AB=AB:AC可得AE·AC=AB2,∵AC=2,AB=4,∴AE=8,∴CE=AE-AC=6.

此時(shí),BE∥CD,理由如下:

∵△ACD∽△ABC,△AEB∽△ABC,

∴∠ACD=∠ABC∠AEB=∠ABC,

∴∠ACD=∠AEB,

∴BE∥CD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=ACD沿AD折疊,使得點(diǎn)C落在斜邊AB上的點(diǎn)E處.

1)問:△BDE與△BAC相似嗎?

2)已知AC=6,BC=8,求線段AD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長(zhǎng)為a的正方形中挖去一個(gè)邊長(zhǎng)為b的小正方形(ab)(如圖甲),把余下的部分拼成一個(gè)矩形(如圖乙),根據(jù)兩個(gè)圖形中陰影部分的面積相等,可以驗(yàn)證( )

A. a+b2=a2+2ab+b2

B. a﹣b2=a2﹣2ab+b2

C. a2﹣b2=a+b)(a﹣b

D. a+2b)(a﹣b=a2+ab﹣2b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D、E、FG四點(diǎn)在△ABC的三邊上,其中DGEF相交于點(diǎn)H.若 ∠ABC∠EFC70°∠ACB60°,∠DGB40°,則下列三角形相似的是( )

A△BDG,△CEF B△ABC,△CEF C△ABC,△BDG D△FGH△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AE2=AD·AB,且∠ABE=∠ACB

證明:1△ADE∽△AEB; (2DE∥BC; (3△BCE∽△EBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):

1 2 3

(1)探究一:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的角之間的關(guān)系

已知:如圖1,在△ADC中,DP、CP分別平分∠ADC和∠ACD,

試探究∠P與∠A的數(shù)量關(guān)系,并說明理由.

(2)探究二:四邊形的兩個(gè)個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的角之間的關(guān)系

已知:如圖2,在四邊形ABCD中,DPCP分別平分∠ADC和∠BCD,

試探究∠P與∠A∠B的數(shù)量關(guān)系,并說明理由.

(3)探究三:六邊形的四個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的角之間的關(guān)系

已知:如圖3,在六邊形ABCDEF中,DP、CP分別平分∠EDC和∠BCD,

請(qǐng)直接寫出∠P與∠A∠B∠E∠F的數(shù)量關(guān)系:__ __ __

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請(qǐng)你通過樣本估計(jì)總體中的中等用水量家庭大約有多少戶.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校在休息天用藥薰消毒法對(duì)教室進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中含藥量y(毫克)與時(shí)間x(分鐘)成正比例;藥物釋放完畢后,yx成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題

1寫出從藥物釋放開始,yx之間的兩個(gè)函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;

2據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.45毫克以下時(shí),學(xué)生方可進(jìn)入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時(shí)后,學(xué)生才能進(jìn)入教室?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).

(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案