精英家教網 > 初中數學 > 題目詳情
已知拋物線y=ax2+x+2.
【小題1】當a=-1時,求此拋物線的頂點坐標和對稱軸
【小題2】若代數式-x2+x+2的值為正整數,求x的值;
【小題3】若a是負數時,當a=a1時,拋物線y=ax2+x+2與x軸的正半軸相交于點M(m,0);當a=a2時,拋物線y=ax2+x+2與x軸的正半軸相交于點N(n,0). 若點M在點N的左邊,試比較a1與a2的大小.

【小題1】當a=-1時,y=-x2+x+2,∴a=-1,b=1,c=2.
 ∴拋物線的頂點坐標為(),對稱軸為直線x=.……2分
【小題2】∵代數式-x2+x+2的值為正整數,∴函數y=-x2+x+2的值為正整數.
又因為函數的最大值為,∴y的正整數值只能為1或2.
  當y=1時,-x2+x+2=1,解得,…………3分
  當y=2時,-x2+x+2=2,解得x3=0,x4=1.……………4分
  ∴x的值為,0或1.
【小題3】當a<0時,即a1<0,a2<0.
  經過點M的拋物線y=a1x2+x+2的對稱軸為,
經過點N的拋物線y=a2x2+x+2的對稱軸為.…………5分

∵點M在點N的左邊,且拋物線經過點(0,2)
∴直線在直線的左側……………6分
.
∴a1<a2.…………………………………………………………7分解析:
(1)根據二次函數的頂點坐標和對稱軸公式求解。
(2)根據函數最大值求得x的值。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知拋物線yax2bxc(a>0)經過點B(12,0)和C(0,-6),對稱軸為x=2.

(1)求該拋物線的解析式.

(2)點D在線段AB上且ADAC,若動點PA出發(fā)沿線段AB以每秒1個單位長度的速度勻速運動,同時另一個動點Q以某一速度從C出發(fā)沿線段CB勻速運動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運動速度;若存在,請說明理由.

(3)在(2)的結論下,直線x=1上是否存在點M,使△MPQ為等腰三角形?若存在,請求出所有點M的坐

標;若存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線y=ax2+bx+c經過點A(0,3)、B(4,3)、C(1,0).
【小題1】填空:拋物線的對稱軸為直線x=______,拋物線與x軸的另一個交點D的坐標為______;
【小題2】求該拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線yax2bxc(a≠0)的對稱軸為x=1,且拋物線經過A(—1,0)、C(0,—3)兩點,與x軸交于另一點B
(1)求這條拋物線所對應的函數關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;
(3)設點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2012屆山東鄒城北宿中學九年級3月月考數學試卷(帶解析) 題型:解答題

已知拋物線y=ax2+bx-4a經過A(-1,0)、C(0,4)兩點,與x軸交于另一點B.
(1)求拋物線的解析式;
(2)若點D(m,m+1)在第一象限的拋物線上, 求點D關于直線BC對稱的點的坐標;
(3)在(2)的條件下,連結BD,若點P為拋物線上一點,且∠DBP=45°,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2010-2011年浙江省嵊州市九年級上學期期末考試數學卷 題型:解答題

(本小題滿分14分)

如圖,已知拋物線yax2bxcx軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3)。設拋物線的頂點為D,求解下列問題:

1.(1)求拋物線的解析式和D點的坐標;

2.(2)過點D作DF∥軸,交直線BC于點F,求線段DF的長,并求△BCD的面積;

3.(3)能否在拋物線上找到一點Q,使△BDQ為直角三角形?若能找到,試寫出Q點的坐標;若不能,請說明理由。

 

查看答案和解析>>

同步練習冊答案