【題目】如圖,邊長為的菱形中,,以對角線為邊作第個菱形,使.連結(jié),再以為邊作第個菱形使,則第個菱形的邊長是________,按此規(guī)律所作第個菱形的邊長是________

【答案】9

【解析】

連接DBAC相交于M,根據(jù)已知和菱形的性質(zhì)可分別求得AC,AE,AG的長,從而可發(fā)現(xiàn)規(guī)律根據(jù)規(guī)律不難求得第n個菱形的邊長.

連接DB,

∵四邊形ABCD是菱形,

AD=AB.ACDB,

∵∠DAB=60°,

∴△ADB是等邊三角形,

DB=AD=1,

BM=,

AM=

AC=,

同理可得第3個菱形的邊長為:AE=AC=(2=3,

4個菱形的邊長為:AG=AE=(3

按此規(guī)律所作的第n個菱形的邊長為(n-1,

故答案為:3,(n-1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】青島某高中允許高三學生從寄宿、走讀兩種方式中選擇一種就讀,今年新高三學生總?cè)藬?shù)與去年相比增加了6%,其中選擇寄宿的學生增加了20%,選擇走讀的學生減少了15%,若去年高三學生的總數(shù)為500人,求今年新高三學生選擇寄宿和走讀的人數(shù)分別是什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AC平分∠BAD,CEABE,CFADF,且BCDC

1BEDF是否相等?請說明理由;

2)若AB14,AD6,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖,已知三角形ABC的邊AB⊙O的切線,切點為BAC經(jīng)過圓心O并與圓相交于點D、C,過C作直線CEAB,交AB的延長線于點E

1)求證:CB平分∠ACE;

2)若BE=3CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖中,平分于點,在上截取,過點于點.求證:四邊形是菱形;

如圖,中,平分的外角的延長線于點,在的延長線上截取,過點的延長線于點.四邊形還是菱形嗎?如果是,請證明;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點、分別在、、上,且,垂足為,那么________(“相等不相等”)26.

如圖,將邊長為的正方形紙片沿折疊,使得點落到邊上.若,求出的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)的商品市場指導價為每千克元,公司的實際銷售價格可以浮動個百分點(即銷售價格),經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品的日銷售量(千克)與銷售價格浮動的百分點之間的函數(shù)關(guān)系為.若該公司按浮動個百分點的價格出售,每件商品仍可獲利

求該公司生產(chǎn)銷售每千克商品的成本為多少元?

當該公司的商品定價為多少元時,日銷售利潤為元?(說明:日銷售利潤(銷售價格一成本)日銷售量)

該公司決定每銷售一千克商品就捐贈元利潤給希望工程,公司通過銷售記錄發(fā)現(xiàn),當價格浮動的百分點大于時,扣除捐贈后的日銷售利潤隨的增大而減小,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,AB=AC=12cm,BC=9cmDAB中點,設點P在線段BC上以3cm/s的速度由B點向C點運動,點Q在線段CA上由C點向A點運動.

1)若Q點運動的速度與P點相同,且點P、Q同時出發(fā),經(jīng)過1秒鐘后BPDCQP是否全等,并說明理由;

2)若點PQ同時出發(fā),但運動的速度不相同,當Q點的運動速度為多少時,能在運動過程中有BPDCQP全等?

查看答案和解析>>

同步練習冊答案