【題目】對于實數(shù),若存在坐標同時滿足一次函數(shù)和反比例函數(shù),則二次函數(shù)為一次函數(shù)和反比例函數(shù)的共享函數(shù).

1)試判斷(需要寫出判斷過程):一次函數(shù)和反比例函數(shù)是否存在共享函數(shù)?若存在,寫出它們的共享函數(shù)和實數(shù)對坐標;

2)已知整數(shù)滿足條件:,并且一次函數(shù)與反比例函數(shù)存在共享函數(shù),求整數(shù)的值.

【答案】1)存在,二次函數(shù)為一次函數(shù)和反比例函數(shù)共享函數(shù),實數(shù)對坐標為;(2

【解析】

1)聯(lián)立方程即可求出實數(shù)對坐標,然后根據(jù)共享函數(shù)的定義即可求出結論;

2)根據(jù)共享函數(shù)的定義即可列出關于mn、t的關系式,然后根據(jù)不等關系式即可求出結論.

解:(1)存在,

,

解得

∴存在同時滿足,其中p=-1,q=4k=3

∴二次函數(shù)為一次函數(shù)和反比例函數(shù)共享函數(shù)

實數(shù)對坐標為

2共享函數(shù)是,

由題意,得

共享函數(shù)為,

,即,

,

,

解得:1m3

為整數(shù),

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在多項式的乘法公式中,完全平方公式是其中重要的一個.

1)請補全完全平方公式的推導過程:

,

.

2)如圖,將邊長為的正方形分割成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,請你結合圖給出完全平方公式的幾何解釋.

3)用完全平方公式求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某次“小學生書法比賽”的成績情況,隨機抽取了30名學生的成績進行統(tǒng)計,并將統(tǒng)計情況繪成如圖所示的頻數(shù)分布直方圖,己知成績x(單位:分)均滿足“50≤x<100”.根據(jù)圖中信息回答下列問題:

(1)圖中a的值為   ;

(2)若要繪制該樣本的扇形統(tǒng)計圖,則成績x在“70≤x<80”所對應扇形的圓心角度數(shù)為   度;

(3)此次比賽共有300名學生參加,若將“x80”的成績記為“優(yōu)秀”,則獲得“優(yōu)秀“的學生大約有   人:

(4)在這些抽查的樣本中,小明的成績?yōu)?2分,若從成績在“50≤x<60”和“90≤x<100”的學生中任選2人,請用列表或畫樹狀圖的方法,求小明被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等邊和等邊中,,點P的高上(點與點不重合),點在點的左側,連接,.

1)求證:

2)當點與點重合時,延長于點,請你在圖2中作出圖形,并求出的長;

3)直接寫出線段長度的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程2x2﹣5xsinA+2=0有兩個相等的實數(shù)根,其中∠A是銳角三角形ABC的一個內(nèi)角.

(1)求sinA的值;

(2)若關于y的方程y2﹣10y+k2﹣4k+29=0的兩個根恰好是ABC的兩邊長,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊余料ABCD,ADBC,現(xiàn)進行如下操作:以點B為圓心,適當長為半徑畫弧,分別交BA,BC于點G,H;再分別以點G,H為圓心,大于GH的長為半徑畫弧,兩弧在ABC內(nèi)部相交于點O,畫射線BO,交AD于點E

1)求證:AB=AE

2)若∠A=100°,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax22ax2的圖象(記為拋物線C1)頂點為M,直線ly2xax軸,y軸分別交于AB

1)對于拋物線C1,以下結論正確的是   ;

對稱軸是:直線x1;頂點坐標(1,﹣a2);拋物線一定經(jīng)過兩個定點.

2)當a0時,設△ABM的面積為S,求Sa的函數(shù)關系;

3)將二次函數(shù)yax22ax2的圖象C1繞點Pt,﹣2)旋轉180°得到二次函數(shù)的圖象(記為拋物線C2),頂點為N

當﹣2x1時,旋轉前后的兩個二次函數(shù)y的值都會隨x的增大而減小,求t的取值范圍;

a1時,點Q是拋物線C1上的一點,點Q在拋物線C2上的對應點為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是某浴室花灑實景圖,圖2是該花灑的側面示意圖.已知活動調節(jié)點B可以上下調整高度,離地面CD的距離BC160cm.設花灑臂與墻面的夾角為α,可以扭動花灑臂調整角度,且花灑臂長AB30cm.假設水柱AE垂直AB直線噴射,小華在離墻面距離CD120cm處淋。

1)當α30°時,水柱正好落在小華的頭頂上,求小華的身高DE

2)如果小華要洗腳,需要調整水柱AE,使點E與點D重合,調整的方式有兩種:

其他條件不變,只要把活動調節(jié)點B向下移動即可,移動的距離BF與小華的身高DE有什么數(shù)量關系?直接寫出你的結論;

活動調節(jié)點B不動,只要調整α的大小,在圖3中,試求α的度數(shù).

(參考數(shù)據(jù):1.73sin8.6°≈0.15,sin36.9°≈0.60,tan36.9°≈0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄭州市精準扶貧工作已進入攻堅階段.貧困戶張伯伯在相關單位的幫扶下把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售在銷售的30天中,第一天賣出20千克為了擴大銷量采取了降價措施以后每天比前一天多賣出4千克第天的售價為/千克,關于的函數(shù)解析式為,且第12天的售價為32/千克,第26天的售價為25/千克.已知種植銷售藍莓的成本是18/千克,每天的利潤是元(利潤=銷售收入成本).

1_________________________;

2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?

3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?

查看答案和解析>>

同步練習冊答案