【題目】畢業(yè)在即,重慶實(shí)驗(yàn)外國語學(xué)校初2016級拍攝了畢業(yè)照,每個(gè)班都得到了若干張風(fēng)格迥異的照片樣品供同學(xué)們選擇.年級團(tuán)委書記王老師想了解同學(xué)們對照片的選擇情況,在全年級進(jìn)行了一次抽樣調(diào)查,按照同學(xué)們選擇的張數(shù)把選擇情況分為四個(gè)層次: A:4張;B:3張;C:2張;D:1張.并將調(diào)查結(jié)果繪制成以下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請你結(jié)合圖中信息解答下列問題:
請你根據(jù)圖中提供的信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)根據(jù)調(diào)查結(jié)果,估計(jì)初2016級2000名同學(xué)一共選擇了多少張畢業(yè)照?
【答案】(1)詳見解析;(2)5800
【解析】
(1)先由A層次人數(shù)及其所占百分比求出總?cè)藬?shù),總?cè)藬?shù)乘以C層次百分比求出其人數(shù),D層次人數(shù)除以總?cè)藬?shù)可得其所占百分比,繼而根據(jù)各層次人數(shù)之和等于總?cè)藬?shù),百分比之和為1求解可得;
(2)先求出樣本中300人拍攝照片張數(shù)的平均數(shù),再乘以總?cè)藬?shù)即可得.
解:(1)∵被調(diào)查的總?cè)藬?shù)為90÷30%=300(人),
∴C層次人數(shù)為300×20%=60(人),D層次對應(yīng)的百分比為×100%=10%,
則B層次人數(shù)為300﹣(90+60+30)=120(人),B層次對應(yīng)的百分比為1﹣(30%+20%+10%)=40%,
補(bǔ)全圖形如下:
(2)∵(張/人),
∴2000×2.9=5800(張).
∴估計(jì)初2016級2000名同學(xué)一共選擇了5800張畢業(yè)照.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,OA=3,OC=4,P為直線AB上一動點(diǎn),將直線OP繞點(diǎn)P逆時(shí)針方向旋轉(zhuǎn)90交直線BC于點(diǎn)Q.
(1)當(dāng)點(diǎn)P在線段AB上運(yùn)動(不與A,B重合)時(shí),求證:OABQ=APBP;
(2)在(1)成立的條件下,設(shè)點(diǎn)P的橫坐標(biāo)為m,線段CQ的長度為,求出關(guān)于m的函數(shù)解析式,并判斷是否存在最小值?若存在,請求出最小值;若不存在,請說明理由;
(3)直線AB上是否存在點(diǎn)P,使△POQ為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了計(jì)算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點(diǎn)B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,頂點(diǎn)分別在坐標(biāo)軸的正半軸上, ,點(diǎn)在直線上,直線與折線有公共點(diǎn).
(1)點(diǎn)的坐標(biāo)是 ;
(2)若直線經(jīng)過點(diǎn),求直線的解析式;
(3)對于一次函數(shù),當(dāng)隨的增大而減小時(shí),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y1=x2+bx+c與直線y2=2x+m相交于A(1,4)、B(﹣1,n)兩點(diǎn).
(1)求y1和y2的解析式;
(2)直接寫出y1﹣y2的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x+3與x軸交于A和B兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求出直線BC的解析式.
(2)M為線段BC上方拋物線上一動點(diǎn),過M作x軸的垂線交BC于H,過M作MQ⊥BC于Q,求出△MHQ周長最大值并求出此時(shí)M的坐標(biāo);當(dāng)△MHQ的周長最大時(shí)在對稱軸上找一點(diǎn)R,使|AR﹣MR|最大,求出此時(shí)R的坐標(biāo).
(3)T為線段BC上一動點(diǎn),將△OCT沿邊OT翻折得到△OC′T,是否存在點(diǎn)T使△OC′T與△OBC的重疊部分為直角三角形,若存在請求出BT的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象過點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使得△PAC的周長最小,若存在,請求出點(diǎn)P的坐標(biāo)及△PAC的周長;若不存在,請說明理由;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在點(diǎn)M(不與C點(diǎn)重合),使得?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD中,對角線AC平分∠DCB,且AD=AB,CD<CB
(1)求證:∠B+∠D=180°;
(2)如圖2,在AC上取一點(diǎn)E,使得BE∥CD,且BE=CE,點(diǎn)F在線段BC上,連接AF,且AB=AF,求證:AE=CF;
(3)如圖3,在(2)的條件下,若BE與AF交于點(diǎn)G,BF:AB=2:7,求tan∠BGF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD的對角線BD上一點(diǎn),連接CP并延長,交AD于E,交BA的延長線點(diǎn)F.問:
(1)圖中△APD與哪個(gè)三角形全等?并說明理由;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com