【題目】如圖,在一棵樹CD10m高處的B點有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經(jīng)過的路程相等,試問這棵樹多高?

【答案】15m

【解析】

試題先由實際問題構(gòu)造出數(shù)學(xué)模型,構(gòu)造出直角三角形,然后列方程求解.

試題解析:解:設(shè)BD高為x,則從B點爬到D點再直線沿DAA點,走的總路程為x+AD,其中AD=

而從B點到A點經(jīng)過路程(20+10m=30m,

根據(jù)路程相同列出方程x+=30

可得=30﹣x

兩邊平方得:(10+x2+400=30﹣x2

整理得:80x=400

解得:x=5,

所以這棵樹的高度為10+5=15m

故答案為:15m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AD=6,DC=7,點HAD上一點,并且AH=2,點EAB上一動點,以HE為邊長作菱形HEFG,并且使點GCD邊上,連接CF

1)如圖1,當(dāng)DG=2時,求證:四邊形EFGH為正方形;

2)如圖2,當(dāng)DG=6時,求△CGF的面積;

3)當(dāng)DG的長度為何值時,△CGF的面積最小,并求出△CGF面積的最小值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有六張完全相同的卡片,分A,B兩組,每組三張,在A組的卡片上分別畫上,B組的卡片上分別畫上○○,如圖1所示

1若將卡片無標(biāo)記的一面朝上擺在桌上,再分別從兩組卡片中隨機各抽取一張,求兩張卡片上標(biāo)記都是的概率請用樹形圖法或列表法求解

2若把A,B兩組卡片無標(biāo)記的一面對應(yīng)粘貼在一起得到3張卡片,其正反面標(biāo)記如圖2所示,將卡片正面朝上擺放在桌上,并用瓶蓋蓋住標(biāo)記.若揭開蓋子,看到的卡片正面標(biāo)記是后,猜想它的反面也是,求猜對的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將五個邊長都為2cm的正方形按如圖所示擺放,點A、B、C、D分別是四個正方形的中心,則圖中四塊陰影面積的和為( )

A.2cm2 B.4cm2 C.6cm2 D.8cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館客房部有60個房間供游客居住,當(dāng)每個房間的定價為每天200元時,房間可以住滿.當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑.對有游客入住的房間,賓館需對每個房間每天支出20元的各種費用.

設(shè)每個房間每天的定價增加x元.求:

1)房間每天的入住量y(間)關(guān)于x(元)的函數(shù)關(guān)系式;

2)該賓館每天的房間收費z(元)關(guān)于x(元)的函數(shù)關(guān)系式;

3)該賓館客房部每天的利潤w(元)關(guān)于x(元)的函數(shù)關(guān)系式;當(dāng)每個房間的定價為每天多少元時,w有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點EBC的延長線上,且CE=BC,AE=ABAE、DC相交于點O,連接DE

1)求證:四邊形ACED是矩形;

2)若AOD=120°,AC=4,求對角線CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是菱形ABCD對角線ACBD的交點,CD=5cm,OD=3cm;過點CCEDB,過點BBEAC,CEBE相交于點E.

(1)求OC的長;

(2)求四邊形OBEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如右圖,正方形ABCD的邊長為2,點EBC邊上一點,以AB為直徑在正方形內(nèi)作半圓

O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象過點(0,3),且與兩坐標(biāo)軸在第一象限所圍成的三角形面積為3,則這個一次函數(shù)的表達(dá)式為(

A.y=1.5x+3B.y=1.5x-3C.y=-1.5x+3D.y=-1.5x-3

查看答案和解析>>

同步練習(xí)冊答案