【題目】已知,如圖1,AB⊥BDB,ED⊥BDD,點C在直線BD上且與F重合,AC=EF,BC=DE .

(1)請說明△ABC≌△FDE,并判斷AC是否垂直FE?

(2)若將△ABC 沿BD方向平移至如圖2的位置時,且其余條件不變,則AC是否垂直FE?請說明為什么?

【答案】(1)AC⊥EF,理由見解析; (2)AC⊥FE,理由見解析.

【解析】

(1)根據(jù)HL的判定方法可證明△ABC△FDE,根據(jù)兩個全等直角三角形的幾個銳角之間的關(guān)系即可證明ACEF.(2)由(1)可知∠A=∠F,根據(jù)∠ABC=ABF=90°,AMN=FMB,可知∠F+FMB=90°, A+AMN=90°,進(jìn)而可證明∠ANM=90°,即ACFE.

(1)ACEF.理由如下

ABBD,EDBD,

∴∠B=D=90°,

RtABCRtFDE

AC=EF,BC=DE

∴△ABC≌△FDE(HL)

∴∠A=EFD,

∵∠B=90°,

∴∠A+ACB=90°,

∴∠ACB+ECD=90°,

∴∠ACE=180°-90°=90°,

ACCE,

ACFE.

(2)AC垂直FE,理由如下

∵∠A=F(已證),ABC=ABF=90°,AMN=FMB,

∴∠F+FMB=90°,

∴∠A+AMN=90°,

∴∠ANM=180°-90°=90°,

ACFE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 頂點的坐標(biāo)分別為 A (1,-1)、B(3,-1)、C(4,1).

⑴將△ABC向上平移1個單位,再向左平移1個單位,請畫出平移后得到的△A1B1C1并寫出點 A1B1、C1 的坐標(biāo);

⑵若△A1B1C1 與△A1B1D 全等(D 點與 C1 不重合),直接寫出點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說法不正確的是( )

A.a>0
B.c>0
C.
D.b2+4ac>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,E是AD邊上一動點,AE=m,將△ABE沿BE折疊后得到△GBE.延長BG交直線CD于點F.

(1)若∠ABE:∠BFC=n,則n=;
(2)當(dāng)E運動到AD中點時,求線段GF的長;
(3)若限定F僅在線段CD上(含端點)運動,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,D是BC邊上一點∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線y1=ax(x﹣t)(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標(biāo)及k的值:A , k=;
(2)隨著三角板的滑動,當(dāng)a= 時:
①請你驗證:拋物線y1=ax(x﹣t)的頂點在函數(shù)y= 的圖象上;
②當(dāng)三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們把平面內(nèi)與一個定點F和一條定直線l(l不經(jīng)過點F)距離相等的點的軌跡(滿足條件的所有點所組成的圖形)叫做拋物線.點F叫做拋物線的焦點,直線l叫做拋物線的準(zhǔn)線.
(1)已知拋物線的焦點F(0, ),準(zhǔn)線l: ,求拋物線的解析式;
(2)已知拋物線的解析式為:y=x2﹣n2 , 點A(0, )(n≠0),B(1,2﹣n2),P為拋物線上一點,求PA+PB的最小值及此時P點坐標(biāo);
(3)若(2)中拋物線的頂點為C,拋物線與x軸的兩個交點分別是D、E,過C、D、E三點作⊙M,⊙M上是否存在定點N?若存在,求出N點坐標(biāo)并指出這樣的定點N有幾個;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了10元.
(1)該商家購進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價至少是多少元?

查看答案和解析>>

同步練習(xí)冊答案