【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張.
(1)請用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結(jié)果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.

【答案】
(1)解:畫樹狀圖為:

共有12種等可能的結(jié)果數(shù);


(2)解:抽到的兩張卡片上的數(shù)都是勾股數(shù)的結(jié)果數(shù)為6,

所以抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率= =


【解析】(1)利用樹狀圖展示12種等可能的結(jié)果數(shù);(2)根據(jù)勾股數(shù)可判定只有A卡片上的三個數(shù)不是勾股數(shù),則可從12種等可能的結(jié)果數(shù)中找出抽到的兩張卡片上的數(shù)都是勾股數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.
【考點精析】利用列表法與樹狀圖法對題目進(jìn)行判斷即可得到答案,需要熟知當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,以AB的中點D為圓心,作圓心角為90°的扇形DEF,點C恰在EF上,設(shè)∠ADE=α(0°<α<90°),當(dāng)α由小到大變化時,圖中陰影部分的面積(
A.由小變大
B.由大變小
C.不變
D.先由小變大,后由大變小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形A1B1C1是由三角形ABC經(jīng)過平移得到的,其中A、B、C三點的對應(yīng)點分別是A1、B1、C1,它們在平面直角坐標(biāo)系中的坐標(biāo)如表所示:

三角形ABC

A0,0

B(﹣1,2

C2,5

三角形A1B1C1

A1a,2

B14,b

C177

1)觀察表中各對應(yīng)點坐標(biāo)的變化,填空a=    ,b=    

2)在圖中的平面直角坐標(biāo)系中畫出三角形ABC及三角形A1B1C1;

3Pm,n)為三角形ABC中任意一點,則平移后對應(yīng)點P'的坐標(biāo)為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,OF平分∠COE.AOC=COB,則∠BOF=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,A FCE,且交BC于點F

(1)求證:ABF≌△CDE

(2)如圖,若∠1=65°,求∠B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象上有一點A(a,3),過點A作AB⊥x軸于點B,將點B沿x軸正方向平移2個單位長度得到點C,過點C作y軸的平行線交反比例函數(shù)于點D,CD= ,直線AD與x軸交于點M,與y軸交于點N.
(1)用含a的式子表示點D的橫坐標(biāo)為:;
(2)求a的值和直線AD的函數(shù)表達(dá)式;
(3)請判斷線段AN與MD的數(shù)量關(guān)系,并說明理由;
(4)若一次函數(shù)y1=k1x+b1經(jīng)過點(10,9),與雙曲線y= (x>0)交于點P,且該一次函數(shù)y1的值隨x的增大而增大,請確定P點橫坐標(biāo)n的取值范圍(不必寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由一些大小相同的小正方體組合成的簡單幾何體.根據(jù)要求完成下列題目.

1)正面圖中有______塊小正方體;

2)請在下面方格紙中分別畫出它的左視圖和俯視圖(畫出的圖都用鉛筆涂上陰影)

3)用小正方體搭一個幾何體,使得它的左視圖和俯視圖與你在(2)中所畫的圖一致,則這樣的幾何體最多要______塊小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,于點G,互余

1)求證:

2)若,求的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(3,0),與y軸交于點C(0,3).

(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)拋物線上的一個動點P的橫坐標(biāo)為t(0<t<0),過點P作PD⊥BC于點D.
①求線段PD的長的最大值;②當(dāng)BD=2CD時,求t的值;
(3)若點Q是拋物線的對稱軸上的動點,拋物線上存在點M,使得以B、C、Q、M為頂點的四邊形為平行四邊形,請求出所有滿足條件的點M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案