【題目】已知半徑為2的⊙O中,弦AC=2,弦AD=2 ,則∠COD的度數(shù)為 .
【答案】150°或30°
【解析】解:連接OC,過點O作OE⊥AD于點E,如圖所示.
∵OA=OC=AC,
∴∠OAC=60°.
∵AD=2 ,OE⊥AD,
∴AE= ,OE= = ,
∴∠OAD=45°,
∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,
∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.
故答案為:150°或30°.
連接OC,過點O作OE⊥AD于點E,由OA=OC=AC可得出∠OAC=60°,再根據(jù)垂徑定理結(jié)合勾股定理可得出AE=OE,即∠OAD=45°,利用角的計算結(jié)合圓周角與圓心角間的關(guān)系,即可求出∠COD的度數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片沿EF折疊,使點C與點A重合,則下列結(jié)論錯誤的是( 。
A.AF=AE
B.△ABE≌△AGF
C.EF=
D.AF=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次調(diào)查的市民人數(shù)為人,m= , n=;
(2)補全條形統(tǒng)計圖;
(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.調(diào)查孝感區(qū)居民對創(chuàng)建“全國衛(wèi)生城市”的知曉度,宜采用抽樣調(diào)查
B.一組數(shù)據(jù)85,95,90,95,95,90,90,80,95,90的眾數(shù)為95
C.“打開電視,正在播放乒乓球比賽”是必然事件
D.同時拋擲兩枚質(zhì)地均勻的硬幣一次,出現(xiàn)兩個正面朝上的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,規(guī)定:拋物線y=a(x﹣h)2+k的伴隨直線為y=a(x﹣h)+k.例如:拋物線y=2(x+1)2﹣3的伴隨直線為y=2(x+1)﹣3,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線y=(x+1)2﹣4的頂點坐標為 , 伴隨直線為 , 拋物線y=(x+1)2﹣4與其伴隨直線的交點坐標為和;
(2)如圖,頂點在第一象限的拋物線y=m(x﹣1)2﹣4m與其伴隨直線相交于點A,B(點A在點B的右側(cè)),與x軸交于點C,D.
①若∠CAB=90°,求m的值;
②如果點P(x,y)是直線BC上方拋物線上的一個動點,△PBC的面積記為S,當(dāng)S取得最大值 時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】桌子上放著背面完全相同的4張撲克牌,其中有一張大王,小明和小紅玩“抽大王”游戲,兩人各抽取一次(每次都不放回),抽到大王者獲勝,小明先抽,小紅后抽,求小紅獲勝的概率.(請用“畫樹狀圖”或“列表”等方法,寫出分析過程,并給出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家支持大學(xué)生創(chuàng)新辦實業(yè),提供小額無息貸款.學(xué)生王亮享受國家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進價為每件40元,該品牌服裝日銷售量y(件)與銷售價x(元/件)之間的關(guān)系可用圖中的一條線段(實線)來表示.該店應(yīng)支付員工的工資為每人每天82元,每天還應(yīng)支付其它費用為106元(不包含貸款).
(1)求日銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;
(2)若該店暫不考慮償還貸款,當(dāng)某天的銷售價為48元/件時,當(dāng)天正好收支平衡(銷售額﹣成本=支出),求該店員工的人數(shù);
(3)若該店只有2名員工,則該店至少需要多少天能還清所有貸款?此時每件服裝的價格應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線y=﹣ x﹣3與坐標軸交于點A,C,經(jīng)過點A,C的拋物線y=ax2+bx﹣3與x軸交于點B(2,0).
(1)求拋物線的解析式;
(2)點D是拋物線在第三象限圖象上的動點,是否存在點D,使得△DAC的面積最大?若存在,請求這個最大值并求出點D的坐標;若不存在,請說明理由;
(3)過點D作DE⊥x軸于E,交AC于F,若AC恰好將△ADE的面積分成1:4兩部分,請求出此時點D的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com