【題目】銳銳參加我市電視臺組織的“牡丹杯”智力競答節(jié)目,答對最后兩道單選題就順利通關,第一道單選題有3個選項,第二道單選題有4個選項,這兩道題銳銳都不會,不過銳銳還有兩個“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個錯誤選項).

(1)如果銳銳兩次“求助”都在第一道題中使用,那么銳銳通關的概率是________;

(2)如果銳銳兩次“求助”都在第二道題中使用,那么銳銳通關的概率是________;

(3)如果銳銳每道題各用一次“求助”,請用樹狀圖或者列表來分析他順利通關的概率.

【答案】(1)(2)(3)

【解析】試題分析:(1)銳銳兩次求助都在第一道題中使用,第一道肯定能對,第二道對的概率為,即可得出結果;

(2)由題意得出第一道題對的概率為,第二道題對的概率為,即可得出結果;

(3)用樹狀圖得出共有6種等可能的結果,銳銳順利通關的只有1種情況,即可得出結果.

試題解析:(1)第一道肯定能對,第二道對的概率為

所以銳銳通關的概率為;

(2)銳銳兩次求助都在第二道題中使用,則第一道題對的概率為,第二道題對的概率為,所以銳銳能通關的概率為×;

(3)銳銳將每道題各用一次求助,分別用A,B表示剩下的第一道單選題的2個選項,a,b,c表示剩下的第二道單選題的3個選項,樹狀圖如圖所示

共有6種等可能的結果,銳銳順利通關的只有1種情況,

∴銳銳順利通關的概率為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是正方形的對角線,點的中點,點上一點,連接于點于點連接

求證:(1

2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC沿射線BC方向平移3cm得到△DEF.若△ABC的周長為14cm,則四邊形ABFD的周長為( 。

A. 14cm B. 17cm C. 20cm D. 23cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級1班體育委員統(tǒng)計了全班同學60秒跳繩的次數(shù),并繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖:

次數(shù)

80≤x<100

100≤x<120

120≤x<140

140≤x<160

160≤x<180

180≤x<200

頻數(shù)

a

4

12

16

8

3

結合圖表完成下列問題:

(1)a=   ;

(2)補全頻數(shù)分布直方圖;

(3)寫出全班人數(shù)是   ,并求出第三組“120≤x<140”的頻率(精確到0.01)

(4)若跳繩次數(shù)不少于140的學生成績?yōu)閮?yōu)秀,則優(yōu)秀學生人數(shù)占全班總?cè)藬?shù)的百分之幾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,DAB上的一點,AECD于點E,BFCD于點F,若CE=BF,試判斷ACBC的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,O為平面直角坐標系的原點,點A坐標為(4,0),同時將點A,O分別向上平移2個單位,再向左平移1個單位,得到對應點B,C

1)求四邊形OABC的面積;

2)在y軸上是否存在一點M,使MOA的面積與四邊形OABC的面積相等?若存在這樣一點,求出點M的坐標,若不存在,請說明理由;

3)如圖2,點POA邊上,且∠CBP=CPB,QAO延長線上一動點,∠PCQ的平分線CDBP的延長線于點D,在點Q運動的過程中,求∠D和∠CQP的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地決策,自來水公司隨機抽取部分用戶的用適量數(shù)據(jù),并繪制了如下不完整統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解決下列問題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?

(2)補全頻數(shù)分直方圖,求扇形統(tǒng)計圖中“25噸~30噸”部分的圓心角度數(shù);

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca0)的對稱軸為x=1,交x軸的一個交點為(x10),且﹣1x10,有下列5個結論:①abc09a﹣3b+c0;2c3ba+c2b2;a+bmam+b)(m≠1的實數(shù))其中正確的結論有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠E∠F90°,∠B∠C,AEAF.有以下結論:①EMFN②CDDN;③∠FAN∠EAM④△ACN≌△ABM.其中正確的有( ).

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案