精英家教網 > 初中數學 > 題目詳情
(2002•東城區(qū))已知⊙O1、⊙O2的半徑都等于1,有下列命題:
①若O1O2=1,則⊙O1與⊙O2有兩個公共點
②若O1O2=2,則⊙O1與⊙O2外切
③若O1O2≤3,則⊙O1與⊙O2必有公共點
④若O1O2>1,則⊙O1與⊙O2至少有兩條公切線
其中正確命題的序號是    .(把你認為正確命題的序號都上).
【答案】分析:本題已知兩圓為等圓,當圓心距=1時,兩圓相交;當圓心距=2時,兩圓外切;當圓心距≤3時,兩圓有外離、外切、相交、內切、內含5種情況需要考慮;當圓心距>1時,兩圓有外離、外切、相交3種情況需要考慮.
解答:解:由題意可得①若O1O2=1,則兩圓相交,⊙O1與⊙O2有兩個公共點,正確;
②若O1O2=2,則⊙O1與⊙O2外切,正確;
③若O1O2≤3,則⊙O1與⊙O2有外離、外切、相交、內切、內含5種情況需要考慮,而兩圓外離時,是沒有公共點的,故錯誤;
④若O1O2>1,則⊙O1與⊙O2有外離、外切、相交3種情況需要考慮,公切線的條數分別是:4、3、2,故至少有兩條公切線,正確.
故正確的是①②④.
點評:可以根據圓心的距離判斷兩個圓的位置關系.兩圓心距離小于兩半徑之和,則兩圓相交;兩圓心距離等于兩半徑之和,則兩圓外切;兩圓心距離大于兩半徑之和,兩圓外離.
練習冊系列答案
相關習題

科目:初中數學 來源:2002年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2002•東城區(qū))已知如圖,一次函數的圖象經過第一,二,三象限,且與反比例函數的圖象交于A,B兩點,與y軸交于點C,OB=,tan∠DOB=
(1)求反比例函數的解析式;
(2)設點A的橫坐標為m,△ABO的面積為S,求S與m的函數關系式,并寫出自變量m的取值范圍;
(3)當△OCD的面積等于,試判斷過A、B兩點的拋物線在x軸上截得的線段長能否等于3?如果能,求此時拋物線的解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市蕭山區(qū)中考數學模擬試卷38(朝暉初中 裘曉麗 周光華)(解析版) 題型:填空題

(2002•東城區(qū))有一個二次函數的圖象,三位學生分別說出了它的一些特點.
甲:對稱軸是直線x=4;
乙:與x軸兩交點的橫坐標都是整數;
丙:與y軸交點的縱坐標也是整數,且以這三個交點為頂點的三角形面積為3;
請寫出滿足上述全部特點的二次函數解析式:   

查看答案和解析>>

科目:初中數學 來源:2002年北京市東城區(qū)中考數學試卷(解析版) 題型:解答題

(2002•東城區(qū))已知如圖,一次函數的圖象經過第一,二,三象限,且與反比例函數的圖象交于A,B兩點,與y軸交于點C,OB=,tan∠DOB=
(1)求反比例函數的解析式;
(2)設點A的橫坐標為m,△ABO的面積為S,求S與m的函數關系式,并寫出自變量m的取值范圍;
(3)當△OCD的面積等于,試判斷過A、B兩點的拋物線在x軸上截得的線段長能否等于3?如果能,求此時拋物線的解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2002年北京市東城區(qū)中考數學試卷(解析版) 題型:填空題

(2002•東城區(qū))有一個二次函數的圖象,三位學生分別說出了它的一些特點.
甲:對稱軸是直線x=4;
乙:與x軸兩交點的橫坐標都是整數;
丙:與y軸交點的縱坐標也是整數,且以這三個交點為頂點的三角形面積為3;
請寫出滿足上述全部特點的二次函數解析式:   

查看答案和解析>>

科目:初中數學 來源:2002年全國中考數學試題匯編《數據分析》(02)(解析版) 題型:填空題

(2002•東城區(qū))2002年5月份,某市區(qū)一周空氣質量報告中某項污染指數的數據是:
31 35 31 34 30 32 31
這組數據的中位數是   

查看答案和解析>>

同步練習冊答案