【題目】知識(shí)遷移我們知道,函數(shù)y=a(x﹣m)2+n(a≠0,m>0,n>0)的圖象是由二次函數(shù)y=ax2的圖象向右平移m個(gè)單位,再向上平移n個(gè)單位得到;類(lèi)似地,函數(shù)y=+n(k≠0,m>0,n>0)的圖象是由反比例函數(shù)y=的圖象向右平移m個(gè)單位,再向上平移n個(gè)單位得到,其對(duì)稱(chēng)中心坐標(biāo)為(m,n).
(1)理解應(yīng)用
函數(shù)y=+1的圖象可由函數(shù)y=的圖象向右平移 個(gè)單位,再向上平移 個(gè)單位得到,其對(duì)稱(chēng)中心坐標(biāo)為
(2)靈活應(yīng)用如圖,在平面直角坐標(biāo)系xOy中,請(qǐng)根據(jù)所給的y=的圖象畫(huà)出函數(shù)y=﹣2的圖象,并根據(jù)該圖象指出,當(dāng)x在什么范圍內(nèi)變化時(shí),y≥﹣1?
(3)實(shí)際應(yīng)用
某老師對(duì)一位學(xué)生的學(xué)習(xí)情況進(jìn)行跟蹤研究,假設(shè)剛學(xué)完新知識(shí)時(shí)的記憶存留量為1,新知識(shí)學(xué)習(xí)后經(jīng)過(guò)的時(shí)間為x,發(fā)現(xiàn)該生的記憶存留量隨x變化的函數(shù)關(guān)系為y1=;若在x=t(t≥4)時(shí)進(jìn)行第一次復(fù)習(xí),發(fā)現(xiàn)他復(fù)習(xí)后的記憶存留量是復(fù)習(xí)前的2倍(復(fù)習(xí)的時(shí)間忽略不計(jì)),且復(fù)習(xí)后的記憶存留量隨x變化的函數(shù)關(guān)系為y2=,如果記憶存留量為時(shí)是復(fù)習(xí)的“最佳時(shí)機(jī)點(diǎn)”,且他第一次復(fù)習(xí)是在“最佳時(shí)機(jī)點(diǎn)”進(jìn)行的,那么當(dāng)x為何值時(shí),是他第二次復(fù)習(xí)的“最佳時(shí)機(jī)點(diǎn)”?
【答案】
(1)1;1;(1,1)
(2)
解:將y=的圖象向右平移2個(gè)單位,然后再向下平移兩個(gè)單位,即可得到函數(shù)y=﹣2的圖象,其對(duì)稱(chēng)中心是(2,﹣2).圖象如圖所示:
由y=﹣1,得﹣2=﹣1,
解得x=﹣2.
由圖可知,當(dāng)﹣2≤x<2時(shí),y≥﹣1
(3)
解:當(dāng)x=t時(shí),y1=,
則由y1==,解得:t=4,
即當(dāng)t=4時(shí),進(jìn)行第一次復(fù)習(xí),復(fù)習(xí)后的記憶存留量變?yōu)?,
∴點(diǎn)(4,1)在函數(shù)y2=的圖象上,
則1=,解得:a=﹣4,
∴y2=,
當(dāng)y2==,解得:x=12,
即當(dāng)x=12時(shí),是他第二次復(fù)習(xí)的“最佳時(shí)機(jī)點(diǎn)”.
【解析】理解應(yīng)用:根據(jù)“知識(shí)遷移”得到雙曲線(xiàn)的圖象平移變換的規(guī)律:上加下減.由此得到答案:
靈活應(yīng)用:根據(jù)平移規(guī)律作出圖象;
實(shí)際應(yīng)用:先求出第一次復(fù)習(xí)的“最佳時(shí)機(jī)點(diǎn)”(4,1),然后帶入y2 , 求出解析式,然后再求出第二次復(fù)習(xí)的“最佳時(shí)機(jī)點(diǎn)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)A(5,6)、B(7,2),先將線(xiàn)段AB向左平移一個(gè)單位,再以原點(diǎn)O為位似中心,在第一象限內(nèi)將其縮小為原來(lái)的得到線(xiàn)段CD,則點(diǎn)A的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為( 。
A.(2,3)
B.(3,1)
C.(2,1)
D.(3,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)P(x,y)的橫坐標(biāo)x的絕對(duì)值表示為|x|,縱坐標(biāo)y的絕對(duì)值表示為|y|,我們把點(diǎn)P(x,y)的橫坐標(biāo)與縱坐標(biāo)的絕對(duì)值之和叫做點(diǎn)P(x,y)的勾股值,記為「P」,即「P」=|x|+|y|.(其中的“+”是四則運(yùn)算中的加法)
(1)求點(diǎn)A(﹣1,3),B(+2,﹣2)的勾股值「A」、「B」。
(2)點(diǎn)M在反比例函數(shù)y=的圖象上,且「M」=4,求點(diǎn)M的坐標(biāo)。
(3)求滿(mǎn)足條件「N」=3的所有點(diǎn)N圍成的圖形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和﹣2;乙袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1、0和2.小麗先從甲袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為x;再?gòu)囊掖须S機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)P的坐標(biāo)為(x,y).
(1)請(qǐng)用表格或樹(shù)狀圖列出點(diǎn)P所有可能的坐標(biāo)。
(2)求點(diǎn)P在一次函數(shù)y=x+1圖象上的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明參加某網(wǎng)店的“翻牌抽獎(jiǎng)”活動(dòng),如圖,4張牌分別對(duì)應(yīng)價(jià)值5,10,15,20(單位:元)的4件獎(jiǎng)品.
(1)如果隨機(jī)翻1張牌,那么抽中20元獎(jiǎng)品的概率為
(2)如果隨機(jī)翻2張牌,且第一次翻過(guò)的牌不再參加下次翻牌,則所獲獎(jiǎng)品總值不低于30元的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓,B為半圓上一點(diǎn),連接AB并延長(zhǎng)至C,使BC=AB,過(guò)C作CD⊥x軸于點(diǎn)D,交線(xiàn)段OB于點(diǎn)E,已知CD=8,拋物線(xiàn)經(jīng)過(guò)O、E、A三點(diǎn).
(1)∠OBA=
(2)求拋物線(xiàn)的函數(shù)表達(dá)式
(3)若P為拋物線(xiàn)上位于第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),以P、O、A、E為頂點(diǎn)的四邊形面積記作S,則S取何值時(shí),相應(yīng)的點(diǎn)P有且只有3個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長(zhǎng)
(2)求圖中陰影部分的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,我們把對(duì)角線(xiàn)互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問(wèn)四邊形ABCD是垂美四邊形嗎?請(qǐng)說(shuō)明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語(yǔ)言敘述)
寫(xiě)出證明過(guò)程(先畫(huà)出圖形,寫(xiě)出已知、求證).
(3)問(wèn)題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com