已知AB是半圓O的直徑,點C是半圓O上的動點,點D是線段AB延長線上的動點,在運動過程中,保持CD=OA.
(1)當直線CD與半圓O相切時(如圖①),求∠ODC的度數(shù);
(2)當直線CD與半圓O相交時(如圖②),設另一交點為E,連接AE,若AE∥OC,
①AE與OD的大小有什么關系?為什么?
②求∠ODC的度數(shù).
(1) ∠ODC=45°;(2) AE=OD.理由見解析;∠ODC=36°.

試題分析:(1)連接OC,因為CD是⊙O的切線,得出∠OCD=90°,由OC=CD,得出∠ODC=∠COD,即可求得.
(2)連接OE,
①證明△AOE≌△OCD,即可得AE=OD;
②利用等腰三角形及平行線的性質(zhì),可求得∠ODC的度數(shù).
試題解析:(1)如圖①,連接OC,

∵OC=OA,CD=OA,
∴OC=CD,
∴∠ODC=∠COD,
∵CD是⊙O的切線,
∴∠OCD=90°,
∴∠ODC=45°;
(2)如圖②,連接OE.

∵CD=OA,∴CD=OC=OE=OA,
∴∠1=∠2,∠3=∠4.
∵AE∥OC,
∴∠2=∠3.
設∠ODC=∠1=x,則∠2=∠3=∠4=x.
∴∠AOE=∠OCD=180°-2x.
①AE=OD.理由如下:
在△AOE與△OCD中,

∴△AOE≌△OCD(SAS),
∴AE=OD.
②∠6=∠1+∠2=2x.
∵OE=OC,∴∠5=∠6=2x.
∵AE∥OC,
∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,
∴x=36°.
∴∠ODC=36°.
【考點】直線與圓的位置關系;平行線的性質(zhì);全等三角形的判定與性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,四邊形ABCD是正方形,點E是邊BC上一點,點F在射線CM上,∠AEF=90°,AE=EF,過點F作射線BC的垂線,垂足為H,連接AC.
(1) 試判斷BE與FH的數(shù)量關系,并說明理由;
(2) 求證:∠ACF=90°;
(3) 連接AF,過A,E,F(xiàn)三點作圓,如圖2. 若EC=4,∠CEF=15°,求的長.

圖1                         圖2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,E為BC邊上的一點,以A為圓心,AE為半徑的圓弧交AB于點D,交AC的延長于點F,若圖中兩個陰影部分的面積相等,則AF的長為  (結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為的直徑,點C在⊙O上,點P是直徑AB上的一點(不與A,B重合),過點P作AB的垂線交BC的延長線于點Q.
(1)在線段PQ上取一點D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關系,并說明理由.
(2)若cosB=,BP=6,AP=1,求QC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一共有幾個圓:天文臺的墻上有很多圖形,如圖所示的可能是一些衛(wèi)星的軌道圖的一部分.請問:圖中一共有幾個圓?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一個扇形的圓心角為120°,半徑為3,則這個扇形的面積為  (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,點D在⊙O上,∠ADC=54°,則∠BAC的度數(shù)等于    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,圓錐的側(cè)面積為15π,底面積半徑為3,則該圓錐的高AO為( 。
A.3B.4C.5D.15

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點D,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( )
A.90°B.100°C.110°D.120°

查看答案和解析>>

同步練習冊答案