【題目】同一平面內(nèi)的兩條線段,下列說法正確的是( )
A. 一定平行
B. 一定相交
C. 可以既不平行又不相交
D. 不平行就相交
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b與雙曲線(x﹤0)相交于A(-4,a)、B(-1,4)兩點.
(1)求直線和雙曲線的解析式;
(2)在y軸上存在一點P,使得PA+PB的值最小,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)圓的一些結(jié)論:①與半徑長相等的弦所對的圓周角是30°;②圓內(nèi)接正六邊形的邊長與該圓半徑相等;③垂直于弦的直徑平分這條弦;④平分弦的直徑垂直于弦.其中正確的是( )
A.①②③
B.①③④
C.②③
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程.
(1)若該方程的一個根為2,求a的值及該方程的另一根.
(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列敘述中,正確的是( 。
A. 在同一平面內(nèi),兩條直線的位置關(guān)系有三種,分別是相交、平行、垂直
B. 不相交的兩條直線叫平行線
C. 兩條直線的鐵軌是平行的
D. 我們知道,對頂角是相等的,那么反過來,相等的角就是對頂角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,錯誤的是( 。
A.菱形的對角線互相垂直平分
B.正方形的對角線互相垂直平分且相等
C.矩形的對角線相等且平分
D.平行四邊形的對角線相等且垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ 中,點 , , 分別是邊 , , 的中點,且 .
(1)求證:四邊形 為矩形;
(2)若 , ,寫出矩形 的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于正數(shù) ,用符號 表示 的整數(shù)部分,例如: , , .點 在第一象限內(nèi),以A為對角線的交點畫一個矩形,使它的邊分別與兩坐標(biāo)軸垂直. 其中垂直于 軸的邊長為 ,垂直于 軸的邊長為 ,那么,把這個矩形覆蓋的區(qū)域叫做點A的矩形域.例如:點 的矩形域是一個以 為對角線交點,長為3,寬為2的矩形所覆蓋的區(qū)域,如圖1所示,它的面積是6.
圖1 圖2
根據(jù)上面的定義,回答下列問題:
(1)在圖2所示的坐標(biāo)系中畫出點 的矩形域,該矩形域的面積是;
(2)點 的矩形域重疊部分面積為1,求 的值;
(3)已知點 在直線 上, 且點B的矩形域的面積 滿足 ,那么 的取值范圍是 . (直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,B , C兩點的坐標(biāo)分別為 , ,CD⊥y軸于點D , 直線l 經(jīng)過點D.
(1)直接寫出點D的坐標(biāo);
(2)作CE⊥直線l于點E , 將直線CE繞點C逆時針旋轉(zhuǎn)45°,交直線l于點F , 連接BF.
①依題意補(bǔ)全圖形;
②通過觀察、測量,同學(xué)們得到了關(guān)于直線BF與直線l的位置關(guān)系的猜想,請寫出你的猜想;
③通過思考、討論,同學(xué)們形成了證明該猜想的幾種思路:
思路1:作CM⊥CF , 交直線l于點M , 可證△CBF≌△CDM , 進(jìn)而可以得出 ,從而證明結(jié)論.
思路2:作BN⊥CE , 交直線CE于點N , 可證△BCN≌△CDE , 進(jìn)而證明四邊形BFEN為矩形,從而證明結(jié)論.
……
請你參考上面的思路完成證明過程.(一種方法即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com