分析 (1)根據(jù)“關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù)”列方程組求出x、y的值,從而得到點A的坐標,再根據(jù)“關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù)”寫出點A1的坐標,根據(jù)“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”寫出點A2的坐標;
(2)設經過OA1的直線解析式為y=kx,利用待定系數(shù)法求一次函數(shù)解析式求出直線解析式,再求出點A2在直線上,然后利用勾股定理列式求出OA1=OA2,最后根據(jù)線段中點的定義證明即可.
解答 (1)解:∵點A(2x+y-3,x-2y)與A1(x+3,y-4)關于x軸對稱,
∴$\left\{\begin{array}{l}{2x+y-3=x+3}\\{x-2y=-(y-4)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$,
所以,A(8,3),
所以,A1(8,-3),A2(-8,3);
(2)證明:設經過O、A1的直線解析式為y=kx,
易得:yOA1=-$\frac{3}{8}$x,
又∵A2(-8,3),
∴A2在直線OA1上,
∴A1、O、A2在同一直線上,
由勾股定理知OA1=OA2=$\sqrt{{8}^{2}+{3}^{2}}$=$\sqrt{73}$,
∴O為線段A1A2的中點.
點評 本題考查了關于x軸、y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:
(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù).
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{x}{3}$+$\frac{2}{3}$=$\frac{x}{4}$-$\frac{3}{4}$ | B. | $\frac{x}{3}$-$\frac{2}{3}$=$\frac{x}{4}$+$\frac{3}{4}$ | C. | $\frac{x}{3}$+$\frac{2}{3}$=$\frac{x-3}{4}$-$\frac{7}{4}$ | D. | $\frac{x}{3}$-$\frac{2}{3}$=$\frac{x-3}{4}$+$\frac{7}{4}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 中位數(shù) | B. | 眾數(shù) | C. | 平均數(shù) | D. | 加權平均數(shù) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com