【題目】我市計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內完成;若由乙隊單獨施工,則完成工程所需天數是規(guī)定天數的1.5倍.如果由甲、乙兩隊先合做10天,那么余下的工程由乙隊單獨完成還需5天.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊合做來完成.則該工程施工費用是多少?
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD交于點O,E為AB的中點,G為BC延長線上一點,射線EO與∠ACG的角平分線交于點F,若AB=8,BC=6,則線段EF的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在不透明的袋子中有四張標著數字1,2,3,4的卡片,這些卡片除數字外都相同.小蕓同學按照一定的規(guī)則抽出兩張卡片,并把卡片上的數字相加.如圖是她所畫的樹狀圖的一部分.
(1)由如圖分析,小蕓的游戲規(guī)則是:從袋子中隨機抽出一張卡片后 (填“放回”或“不放回”),再隨機抽出一張卡片;
(2)幫小蕓完成樹狀圖;
(3)求小蕓兩次抽到的數字之和為奇數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,其中AB=4,∠AOC=120°,P為⊙O上的動點,連AP,取AP中點Q,連CQ,則線段CQ的最大值為( 。
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,
(1)求DE的長;
(2)過點EF作EF⊥CE,交AB于點F,求BF的長;
(3)過點E作EG⊥CE,交CD于點G,求DG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線與x軸交于點A、B兩點(A點在B點左側),與y軸交于點C(0,-3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D.
(1)求出拋物線的函數表達式;
(2)設點E時拋物線上一點,且S△ABE=S△ABC,求tan∠ECO的值;
(3)點P在拋物線上,點Q在拋物線對稱軸上,若以B、C、P、Q為頂點的四邊形是平行四邊形,求點P坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系中,O為坐標原點,點A坐標為(2,0),以OA為邊在第一象限內作等邊△OAB,C為x軸正半軸上的一個動點(OC>2),連接BC,以BC為邊在第一象限內作等邊△BCD,直線DA交y軸于E點.
(1)求證:△OBC≌△ABD
(2)隨著C點的變化,直線AE的位置變化嗎?若變化,請說明理由;若不變,請求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點F,當C點運動到何處時,直線EF∥直線BO;這時⊙F和直線BO的位置關系如何?請給予說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載,某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側取點A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(結果保留根號);
(2)已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.(參考數據:≈1.7,≈1.4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明調查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數和中位數分別是( )
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com