已知拋物線的頂點在坐標(biāo)軸上,求該拋物線的關(guān)系式.

答案:略
解析:

解法1:(配方法)

,

∴頂點坐標(biāo)為,

當(dāng)頂點在y軸上時,,∴a=2.

當(dāng)頂點在x軸上時,.

.

因此拋物線關(guān)系式為

解法2:∵二次函數(shù)的頂點坐標(biāo)為,

∴拋物線的頂點為,

當(dāng)頂點在y軸上時,,∴a=2.

當(dāng)頂點在x軸上時,,

.

因此拋物線關(guān)系為

解法3:∵拋物線的頂點在x軸上,即該拋物線與x軸只有一個交點,

,

解得a=4a=8.

當(dāng)拋物線的頂點在y軸上時,該拋物線對稱軸為y.

∴-(a2)=0,∴a=2.

因此拋物線關(guān)系式為.


提示:

頂點在坐標(biāo)軸上應(yīng)分兩種情況:在x軸上或在y軸上,即頂點縱坐標(biāo)為0或橫坐標(biāo)為0,因此可先求出頂點坐標(biāo),也可利用判別式,因為頂點在x軸上,拋物線與x軸只有一個交點,則,解函數(shù)方程求出.另外,由頂點在y軸上知對稱軸.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線y=ax2+bx+c經(jīng)過A(-1,0),B(3,0),C(0,3)三點.
(1)求拋物線的解析式和頂點M的坐標(biāo),并在給定的直角坐系中畫出這條拋物線;
(2)若點(x0,y0)在拋物線上,且1≤x0≤4,寫出y0的取值范圍;
(3)設(shè)平行于y軸的直線x=t交線段BM于點P(點P能與點M重合,不能與點B重合),交x軸于點Q,四邊形AQPC的面積為S
①求s關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;
②求S取得最大值時P的坐標(biāo);
③設(shè)四邊形OBMC的面積為S’,判斷是否存在點P,使得S=S’,若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

已知拋物線的頂點在第一象限,其橫坐標(biāo)是縱坐標(biāo)的2倍,對稱軸與x軸的交點在一次函數(shù)的圖象上,求bc的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 九年級數(shù)學(xué)下 題型:044

已知拋物線y=x2+bx+c的頂點在第四象限,頂點的縱坐標(biāo)是橫坐標(biāo)的2倍,對稱軸與x軸的交點在一次函數(shù)y=x-c上,求b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省蘇州市相城區(qū)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過A(-1,0),B(3,0),C(0,3)三點.
(1)求拋物線的解析式和頂點M的坐標(biāo),并在給定的直角坐系中畫出這條拋物線;
(2)若點(x,y)在拋物線上,且1≤x≤4,寫出y的取值范圍;
(3)設(shè)平行于y軸的直線x=t交線段BM于點P(點P能與點M重合,不能與點B重合),交x軸于點Q,四邊形AQPC的面積為S
①求s關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;
②求S取得最大值時P的坐標(biāo);
③設(shè)四邊形OBMC的面積為S’,判斷是否存在點P,使得S=S’,若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東東營卷)數(shù)學(xué)(解析版) 題型:解答題

已知拋物線經(jīng)過A(2,0). 設(shè)頂點為點P,與x軸的另一交點為點B.

(1)求b的值,求出點P、點B的坐標(biāo);

(2)如圖,在直線 上是否存在點D,使四邊形OPBD為平行四邊形?若存在,求出點D的坐

標(biāo);若不存在,請說明理由;

(3)在x軸下方的拋物線上是否存在點M,使△AMP≌△AMB?如果存在,試舉例驗證你的猜想;如果不存在,試說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案