【題目】如圖,在△ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.

【答案】
(1)證明:∵點D,E,F(xiàn)分別是AB,BC,CA的中點,

∴DE、EF都是△ABC的中位線,

∴EF∥AB,DE∥AC,

∴四邊形ADEF是平行四邊形


(2)∵四邊形ADEF是平行四邊形,

∴∠DEF=∠BAC,

∵D,F(xiàn)分別是AB,CA的中點,AH是邊BC上的高,

∴DH=AD,F(xiàn)H=AF,

∴∠DAH=∠DHA,∠FAH=∠FHA,

∵∠DAH+∠FAH=∠BAC,

∠DHA+∠FHA=∠DHF,

∴∠DHF=∠BAC,

∴∠DHF=∠DEF.


【解析】(1)根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EF∥AB,DE∥AC,再根據(jù)平行四邊形的定義證明即可;(2)根據(jù)平行四邊形的對角相等可得∠DEF=∠BAC,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DH=AD,F(xiàn)H=AF,再根據(jù)等邊對等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代換即可得到∠DHF=∠DEF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是△ABC的邊BC上任一點,已知AB=6,AD=3,∠DAC=∠B.若△ABD的面積為a,則△ACD的面積為(
A.a
B.
C.
D. a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,下列結論: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正確的是(

A.①④
B.②④
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知∠MON=30°, A1,A2,A3,…在射線 ON , B1,B2,B3,…在射線 OM ,A1B1A2A2B2A3,A3B3A4,…均為等邊三角形 OA1=1,A6B6A7的邊長為( )

A. 32 B. 16 C. 8 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結論:①OA=OD;②AD⊥EF;③當∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2 . 其中正確的是(
A.②③
B.②④
C.②③④
D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,∠B=90°,以AB上的一點O為圓心,以OA為半徑的圓交AC于點D,交AB于點E.
(1)求證:ACAD=ABAE;
(2)如果BD是⊙O的切線,D是切點,E是OB的中點,當BC=2時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解中考體育科目訓練情況,某縣從全縣九年級學生中隨機抽取了部分學生進行了一次中考體育科目測試(把測試結果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學生人數(shù)是;
(2)圖1中∠α的度數(shù)是 , 并把圖2條形統(tǒng)計圖補充完整;
(3)該縣九年級有學生3500名,如果全部參加這次中考體育科目測試,請估計不及格的人數(shù)為
(4)測試老師想從4位同學(分別記為E、F、G、H,其中E為小明)中隨機選擇兩位同學了解平時訓練情況,請用列表或畫樹形圖的方法求出選中小明的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,直線l與⊙O相切于點C,AD⊥l,垂足為D,AD交⊙O于點E,連接OC、BE.若AE=6,OA=5,則線段DC的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙二人在環(huán)形跑道上同時同地出發(fā),同向運動.若甲的速度是乙的速度的2倍,則甲運動2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,則甲運動 周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,則甲運動 周,甲、乙第一次相遇,…,以此探究正常走時的時鐘,時針和分針從0點(12點)同時出發(fā),分針旋轉周,時針和分針第一次相遇.

查看答案和解析>>

同步練習冊答案