【題目】如圖,矩形ABCD沿著直線BD折疊,使點C落在C′處,BC′AD于點E,AD=8,AB=6,求AE的長。

【答案】AE的長為.

【解析】試題分析:先根據(jù)折疊的性質(zhì)得到∠DBC=DBE,再由ADBC得到∠DBC=BDE,則∠DBE=BDE,于是可判斷BE=DE設(shè)AE=x,則DE=BE=8-x,然后在RtABE中利用勾股定理得到x2+62=8-x2,再解方程即可.

試題解析:∵矩形ABCD沿著直線BD折疊,使點C落在C′處,BC′AD于點E,

∴∠C′BD=CBD,

∵四邊形ABCD為矩形,

ADBC,

∴∠EDB=CBD,

∴∠EDB=C′BD,

EB=ED,

設(shè)AE=x,則ED=AD﹣AE=8﹣x,BE=8﹣x,

RtABE中,

AB2+AE2=BE2,

62+x2=(8x)2,解得x=,

AE的長為。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程隊(有甲、乙兩組)承接了世界園藝博覽會的一項小型工程任務(wù),這項任務(wù)規(guī)定在若干天內(nèi)完成.已知甲組單獨完成這項工程所需時間比規(guī)定時間多20天,乙組單獨完成這項工程所需時間比規(guī)定時間多10天.如果甲、乙兩組先合作15天,剩下的由甲單獨做,則正好如期完成,那么規(guī)定的時間是多少天?(列方程解應(yīng)用題)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3交y軸于點C,直線l為拋物線的對稱軸,點P在第三象限且為拋物線的頂點.P到x軸的距離為 ,到y(tǒng)軸的距離為1.點C關(guān)于直線l的對稱點為A,連接AC交直線l于B.

(1)求拋物線的表達式;
(2)直線y= x+m與拋物線在第一象限內(nèi)交于點D,與y軸交于點F,連接BD交y軸于點E,且DE:BE=4:1.求直線y= x+m的表達式;
(3)若N為平面直角坐標(biāo)系內(nèi)的點,在直線y= x+m上是否存在點M,使得以點O、F、M、N為頂點的四邊形是菱形?若存在,直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EAB邊上一點,過點DDFDE,與BC延長線交于點F.連接EF,CD邊交于點G,與對角線BD交于點H.

(1)若BF=BD=,求BE的長;

(2)若∠ADE=2BFE,求證:FH=HE+HD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點B、E、C、F在一條直線上,AB = DF,AC = DE,BE = CF.

求證: (1) △ABC ≌ △DFE ;

(2)連接AF、BD,求證:四邊形ABDF是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】決心試一試,請閱讀下列材料:計算:

解法一:原式=

=

=

解法二:原式=

=

=

=

解法三:原式的倒數(shù)為:

=

=﹣20+3﹣5+12

=﹣10

故原式 =

上述得出的結(jié)果不同,肯定有錯誤的解法,你認為解法 是錯誤的,在正確的解法中,你認為解法 最簡捷.然后請解答下列問題,計算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC各頂點的坐標(biāo)分A(-2,-2),B(-4,-1),C(-4,-4).

(1)作出△ABC關(guān)于原點O成中心對稱的△A1B1C1

(2)作出點A關(guān)于x軸的對稱點A'.若把點A'向右平移a個單位長度后落在

△A1B1C1的內(nèi)部(不包括頂點和邊界),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車銷售公司經(jīng)銷某品牌A、B兩款汽車,已知A款汽車每輛進價為萬元,B款汽車每輛進價為6萬元.

公司預(yù)計用不多于135萬元且不少于129萬元的資金購進這兩款汽車共20輛,有幾種進貨方案,它們分別是什么?

如果A款汽車每輛售價為9萬元,B款汽車每輛售價為8萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬元,要使中所有的方案獲利相同,a值應(yīng)是多少,此種方案是什么?(提示:可設(shè)購進B款汽車x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在AOBCOD中,OA=OB,OC=OD,AOB=COD=90°

1)如圖1,點C、D分別在邊OA、OB上,連結(jié)AD、BC,點M為線段BC的中點,連結(jié)OM,則請你判斷線段ADOM之間的數(shù)量關(guān)系,并加以證明.

2)如圖2,將圖1中的COD繞點O逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為αα90°).連結(jié)ADBC,點M為線段BC的中點,連結(jié)OM.請你判斷(1)中的結(jié)論是否仍然成立.若成立,請證明;若不成立,請說明理由;

3)如圖3,將圖1中的COD繞點O逆時針旋轉(zhuǎn)到使COD的一邊OD恰好與AOB的邊OA在同一條直線上時,點C落在OB上,點M為線段BC的中點.請你判斷(1)中線段ADOM之間的數(shù)量關(guān)系是否發(fā)生變化,寫出你的猜想,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案