已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.

(1)當點P在線段AB上時,求證:△AQP∽△ABC;
(2)當△PQB為等腰三角形時,求AP的長.

(1)證明見解析;(2)或6.

解析試題分析:(1)由兩對角相等(∠APQ=∠C,∠A=∠A),證明△APQ∽△ABC;(2)當△PQB為等腰三角形時,有兩種情況,需要分類討論:(I)當點P在線段AB上時,如題圖1所示,由△APQ∽△ABC計算AP的長,(II)當點P在線段AB的延長線上時,如題圖2所示,利用角之間的關(guān)系,證明點B為線段AP的中點,從而可以求出AP.
試題解析:(1)∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C.
在△APQ與△ABC中,∵∠APQ=∠C,∠A=∠A,∴△APQ∽△ABC.
(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.
∵∠BPQ為鈍角,∴當△PQB為等腰三角形時,只可能是PB=PQ.
(I)當點P在線段AB上時,如題圖1所示,
由(1)可知,△APQ∽△ABC,∴,即,解得:.
.
(II)當點P在線段AB的延長線上時,如題圖2所示,
∵BP=BQ,∴∠BQP=∠P.
∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A. ∴BQ=AB.
∴AB=BP,點B為線段AB中點.
∴AP=2AB=2×3=6.
綜上所述,當△PQB為等腰三角形時,AP的長為或6.
考點:1.相似三角形的判定和性質(zhì);2.勾股定理;3.等腰三角形的性質(zhì);4.直角三角形斜邊上中線的性質(zhì);5.分類思想的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

老師要求同學們在圖①中內(nèi)找一點P,使點P到OM、ON的距離相等.
小明是這樣做的:在OM、ON上分別截取OA=OB,連結(jié)AB,取AB中點P,點P即為所求.
請你在圖②中的內(nèi)找一點P,使點P到OM的距離是到ON距離的2倍.要求:簡單敘述做法,并對你的做法給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

晚上,小亮走在大街上.他發(fā)現(xiàn):當他站在大街兩邊的兩盞路燈之間,并且自己被兩邊路燈照在地上的兩個影子成一直線時,自己右邊的影子長為3米,左邊的影子長為1.5米.又知自己身高1.80米,兩盞路燈的高相同,兩盞路燈之間的距離為12米.求路燈的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,梯形ABCD是一個攔河壩的截面圖,壩高為6米.背水坡AD的坡角,為了提高河壩的抗洪能力,防汛指揮部決定加固河壩,若壩頂CD加寬0.8米,新的背水坡EF的坡度為1:1.4.河壩總長度為500米.

(1)求完成該工程需要多少立方米方土?
(2)某工程隊在加固600立方米土后,采用新的加固模式,這樣每天加固方數(shù)是原來的2倍,結(jié)果只用11天完成了大壩加固的任務(wù).請你求出該工程隊原來每天加固多少立方米土?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD,垂足為E.

(1)求證:△ABE∽△DBC;
(2)求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上一點(不與點A、B重合),連結(jié)CO并延長CO交⊙O于點D,連結(jié)AD.

(1)求弦長AB的長度;(結(jié)果保留根號);
(2)當∠D=20°時,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,在正方形ABCD中,AB=1,點E在AB延長線上,聯(lián)結(jié)CE、DE,DE交邊BC于點F,設(shè)BE,CF

圖1
(1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(2)如圖2,對角線AC、BD的交點記作O,直線OF交線段CE于點G,求證:;

圖2
(3)在(2)的條件下,當時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉(zhuǎn)中心轉(zhuǎn)動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).

(1)當PE⊥AB,PF⊥BC時,如圖1,則的值為     ;
(2)現(xiàn)將三角板繞點P逆時針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;
(3)在(2)的基礎(chǔ)上繼續(xù)旋轉(zhuǎn),當60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

小穎同學到學校領(lǐng)來n盒粉筆,整齊地摞在講桌上,其三視圖如圖,則n的值是( 。

A.6B.7 C.8 D.9

查看答案和解析>>

同步練習冊答案