【題目】如圖,正方形ABCD的面積為16,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線BD上有一點(diǎn)P,使PC+PE的和最小,則這個(gè)最小值為_______.
【答案】4
【解析】
根據(jù)正方形的性質(zhì),推出C、A關(guān)于BD對(duì)稱(chēng),推出CP=AP,推出EP+CP=AE,根據(jù)等邊三角形性質(zhì)推出AE=AB=EP+CP,根據(jù)正方形面積公式求出AB即可.
連接AC,
∵正方形ABCD,
∴AC⊥BD,OA=OC,
∴C、A關(guān)于BD對(duì)稱(chēng),
即C關(guān)于BD的對(duì)稱(chēng)點(diǎn)是A,
連接AE交BD于P,
則此時(shí)EP+CP的值最小,
∵C、A關(guān)于BD對(duì)稱(chēng),
∴CP=AP,
∴EP+CP=AE,
∵等邊三角形ABE,
∴EP+CP=AE=AB,
∵正方形ABCD的面積為16,
∴AB=4,
∴EP+CP=4,
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時(shí),連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長(zhǎng)度是 ( )
A. B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,過(guò)點(diǎn)A作AE⊥CD于點(diǎn)F,交CB于點(diǎn)E,且∠EAB=∠DCB.
(1)求∠B的度數(shù):
(2)求證:BC=3CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)某種商品平均每天可銷(xiāo)售30件,每件盈利50元。為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件。設(shè)每件商品降價(jià)元。據(jù)此規(guī)律,請(qǐng)回答:
(1)商場(chǎng)日銷(xiāo)售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷(xiāo)售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)求出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱(chēng)軸;
(2)連接BC,與拋物線的對(duì)稱(chēng)軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式,S是否有最大值?如有,請(qǐng)求出最大值,沒(méi)有請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形中,是邊上一點(diǎn),
(1)將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)。使、重合,得到,如圖(a)所示.觀察可知:與相等的線段是__________,__________.
(2)如圖(b)所示,正方形中,、分別是、邊上的點(diǎn),且,試通過(guò)旋轉(zhuǎn)的方式說(shuō)明:.
(3)在(2)的條件下,連接分別交、于點(diǎn)、,如圖(c)所示.判斷、、之間的關(guān)系,直接寫(xiě)出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)坐標(biāo)分別為(﹣2,1)和(2,3).
(1)在圖中分別畫(huà)出線段AB關(guān)于x軸的對(duì)稱(chēng)線段A1B1,并寫(xiě)出A1、B1的坐標(biāo).
(2)在x軸上找一點(diǎn)C,使AC+BC的值最小,在圖中作出點(diǎn)C,并直接寫(xiě)出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=48°,∠BAC的平分線與線段AB的垂直平分線OD交于點(diǎn)O.連接OB、OC,將∠ACB沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)M是AB上的一點(diǎn),點(diǎn)N是CB上的一點(diǎn).
(1)若3BM=4CN.
①如圖1,當(dāng)CN=時(shí),判斷MN與AC的位置關(guān)系,并說(shuō)明理由;
②如圖2,連接AN,CM,當(dāng)∠CAN與△CMB中的一個(gè)角相等時(shí),求BM的值.
(2)當(dāng)MN⊥AB時(shí),將△NMB沿直線MN翻折得到△NMF,點(diǎn)B落在射線BA上的F處,設(shè)MB=x,△NMF與△ABC重疊部分的面積為y,求y關(guān)于x的函數(shù)表達(dá)式及x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com