【題目】如圖,在中,,,點邊上一點,且AD=3cm,動點從點出發(fā)沿線段向終點運動.作,與邊相交于點

找出圖中的一對相似三角形,并說明理由;

為等腰三角形時,求的長;

求動點從點出發(fā)沿線段向終點運動的過程中點的運動路線長.

【答案】(1);(2)的長為;(3)cm.

【解析】

(1)由等腰直角三角形的性質(zhì)得出∠A=B=45°由三角形的外角性質(zhì)和已知條件證出∠ADE=BEF,即可得出結(jié)論;

(2)分三種情況:①若EF=BF,由相似三角形的性質(zhì)和勾股定理求出AE=DE=即可;

②若EF=BE,由相似三角形的性質(zhì)和勾股定理求出AE即可;

③若BF=BE,則∠FEB=EFB,由ADE∽△BEF得出AE=AD=3即可.

(3)由(1)得出ADE∽△BEF,得到,得出的二次函數(shù),即可得出結(jié)果.

解:,理由如下:

∵在中,,

,

,,

;

分三種情況

①如圖,若,則,

又∵

,

;

②如圖,若,則

又∵

,

;

③如圖,若,則

又∵

,

綜上所述,當為等腰三角形時,的長為

設(shè),長為

∵在中,,

,

得:,

,

,

∴當時,有最大值,

∵從運動的過程中可以得出點運動的路程正好是,

∴點運動路程為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABG中,AB=AC=1,∠A=45°,邊長為1的正方形的一個頂點D在邊AG上,與△ADC另兩邊分別交于點E、F,DE∥AB,將正方形平移,使點D保持在AC上(D不與A重含),設(shè)AF=x,正方形與△ABC重疊部分的面積為y.

(1)求y與x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

(2)x為何值時y的值最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABCABC是以坐標原點O為位似中心的位似圖形,且點B(3,1),B′(6,2).

(1)請你根據(jù)位似的特征并結(jié)合點B的坐標變化回答下列問題:

若點A(,3),A的坐標為______;

②△ABCABC的相似比為______;

(2)ABC的面積為m,ABC的面積.(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有兩個圓,的半徑等于籃球的半徑,的半徑等于一個乒乓球的半徑,現(xiàn)將兩個圓的周長都增加米,則面積增加較多的圓是( )

A. B.

C. 兩圓增加的面積是相同的 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,度.上一點,以為圓心、為半徑的圓與交于點,與切于點,,.設(shè)是線段上的動點(、不重合),

的長;

為何值時,以、為頂點的三角形是等腰三角形;

在點的運動過程中,的外接圓能否相切?若能,請證明;若不能,請說明理由;

請再提出一個與動點有關(guān)的數(shù)學問題,并直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)(a0)的圖象如圖,分析下列四個結(jié)論:①;;;.其中正確的結(jié)論有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系網(wǎng)格中,將ABC進行位似變換得到A1B1C1

(1)A1B1C1ABC的位似比是

(2)畫出A1B1C1關(guān)于y軸對稱的A2B2C2;

(3)設(shè)點P(a,b)為ABC內(nèi)一點,則依上述兩次變換后,點P在A2B2C2內(nèi)的對應(yīng)點P2的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABBD,CDBD,AB=6cm,CD=4cm,BD=14cm,點pBD上移動,當PB= ______ 時,APBCPD相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中(如圖).已知拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和點B(0,),頂點為C,點D在其對稱軸上且位于點C下方,將線段DC繞點D按順時針方向旋轉(zhuǎn)90°,點C落在拋物線上的點P處.

(1)求這條拋物線的表達式;

(2)求線段CD的長;

(3)將拋物線平移,使其頂點C移到原點O的位置,這時點P落在點E的位置,如果點My軸上,且以O、D、E、M為頂點的四邊形面積為8,求點M的坐標.

查看答案和解析>>

同步練習冊答案