【題目】如圖(1), 點(diǎn)為直線上一點(diǎn),過點(diǎn)作射線, 將一直角的直角項(xiàng)點(diǎn)放在點(diǎn)處,即反向延長射線,得到射線.
(1)當(dāng)的位置如圖(1)所示時(shí),使,若,求的度數(shù).
(2)當(dāng)的位置如圖(2)所示時(shí),使一邊在的內(nèi)部,且恰好平分,
問:射線的反向延長線是否平分請(qǐng)說明理由:注意:不能用問題中的條件
(3)當(dāng)的位置如圖所示時(shí),射線在的內(nèi)部,若.試探究與之間的數(shù)量關(guān)系,不需要證明,直接寫出結(jié)論.
【答案】為;平分,理由見解析;
【解析】
(1)∠NOB+∠BOC+∠COD=180°,根據(jù)題目已知條件代入即可求解;
(2) ∠MON=∠MOD=90°,利用互余的性質(zhì)可以得出∠DOC=∠BON,由對(duì)頂角的性質(zhì)得出∠BON=∠AOD,即可得出結(jié)果;
(3)根據(jù)∠BOC=120°,得出∠AOC=60°,再利用∠MON-∠AOC=30°即可得出結(jié)論.
解:(1)∵∠NOB=20°,∠BOC=120°
∠NOB+∠BOC+∠COD=180°
∴∠COD=180°-20°-120°=40°
(2)OD平分∠AOC
∵∠MON=∠MOD=90°
∴∠DOC+COM=∠MOB+∠BON
∵OM平分∠BOC
∴∠COM=∠MOB
∴∠DOC=∠BON
∵∠BON=∠AOD(對(duì)頂角相等)
∴∠AOD=∠DOC
∴OD平分∠AOC
(3)∵∠BOC=120°
∴∠AOC=180°-120°=60°
∵∠MON=90°
∴∠MON-∠AOC=30°
∴∠AOM+∠AON-∠AON-∠NOC=30°
∴∠AOM-∠NOC=30°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知:如圖,在菱形ABCD中,點(diǎn)E、F分別在邊BC、CD,∠BAF=∠DAE,AE與BD交于點(diǎn)G.
(1)求證:BE=DF;
(2)若,求證:四邊形BEFG是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)y=kx+5(k為常數(shù),且k≠0)的圖象交于A(﹣2,b),B兩點(diǎn).
(1)求一次函數(shù)的表達(dá)式;
(2)若將直線AB向下平移m(m>0)個(gè)單位長度后與反比例函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織340名師生進(jìn)行長途考察活動(dòng),帶有行李170件,計(jì)劃租用甲、乙兩種型號(hào)的汽車共10輛.經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.
(1)請(qǐng)你幫助學(xué)校設(shè)計(jì)所有可行的租車方案.
(2)如果甲車的租金為每輛2 000元,乙車的租金為每輛1 800元,問哪種可行方案使租車費(fèi)用最?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是18,點(diǎn)E是AB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)F是CD邊上一點(diǎn),,連接EF,把正方形ABCD沿EF折疊,使點(diǎn)A,D分別落在點(diǎn),處,當(dāng)點(diǎn)落在直線BC上時(shí),線段AE的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1, 點(diǎn)在直線上, ,將.繞著點(diǎn)以的速度逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時(shí)間為.
(1)如圖2,當(dāng)平分時(shí),______; 圖中的補(bǔ)角有: ______;
(2)如圖3,當(dāng)時(shí),平分, 平分,求的度數(shù);
(3)在繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)的過程中,當(dāng)______時(shí),.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于y軸對(duì)稱.
(1)求直線BC的函數(shù)表達(dá)式;
(2)設(shè)點(diǎn)M是x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作y軸的平行線,交直線AB于點(diǎn)P,交直線BC于點(diǎn)Q,連接BM.
①若∠MBC=90°,求點(diǎn)P的坐標(biāo);
②若△PQB的面積為,請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.
(1)k的值是______;
(2)當(dāng)t=4時(shí),求△BMN面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】依據(jù)國家實(shí)行的《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對(duì)懷柔區(qū)初一學(xué)生身高進(jìn)行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項(xiàng)建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在150≤x<175范圍內(nèi),隨機(jī)抽取初一學(xué)生進(jìn)行抽樣調(diào)查.抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:
根據(jù)統(tǒng)計(jì)圖表提供的信息,下列說法中
①抽取男生的樣本中,身高在155≤x<165之間的學(xué)生有18人;
②初一學(xué)生中女生的身高的中位數(shù)在B組;
③抽取的樣本中,抽取女生的樣本容量是38;
④初一學(xué)生身高在160≤x<170之間的學(xué)生約有800人.
其中合理的是
A. ①② B. ①④ C. ②④ D. ③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com