如圖,在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為圓心、半徑為1的⊙O與x軸交于A,B兩點(diǎn),與y軸交于C,D兩點(diǎn).E為⊙O上在第一象限的某一點(diǎn),直線BF交⊙O于點(diǎn)F,且∠ABF=∠AEC,則直線BF對(duì)應(yīng)的函數(shù)表達(dá)式為   
【答案】分析:由題意可知,∠AEC=∠AOC=45°;當(dāng)∠ABF=∠AEC=45°時(shí),只有點(diǎn)F與點(diǎn)C或D重合,根據(jù)待定系數(shù)法可求出直線BF對(duì)應(yīng)的函數(shù)表達(dá)式.
解答:解:根據(jù)圓周角定理得,∠AEC=∠AOC=45°,
∵∠ABF=∠AEC=45°,
∴點(diǎn)F與點(diǎn)C或D重合;
當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),設(shè)直線BF解析式y(tǒng)=kx+b,
,解得
∴直線BF的解析式為y=-x+1,
當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),同理可得y=x-1.
點(diǎn)評(píng):本題考查了圓周角定理的運(yùn)用及待定系數(shù)法求解析式的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過(guò)第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過(guò)點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6

(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案