【題目】如圖,把一張長方形紙片ABCD沿EF折疊后,EDBC交點為GD、C分別在M、N的位置上,若∠2-1=40°,則∠EFC的度數(shù)為(

A. 115°B. 125°C. 135°D. 145°

【答案】B

【解析】

根據(jù)平行線的性質(zhì)可得∠1與∠2之和,又因為∠2-1=40°,解二元一次方程組可得∠1與∠2的度數(shù),根據(jù)平角求得∠DEM的度數(shù),利用折疊的性質(zhì)可得∠DEF的度數(shù),最后根據(jù)兩直線平行,同旁內(nèi)角互補求得∠EFC即可.

∵四邊形ABCD是長方形

ADBC

∴∠1+2=180°

又∵∠2-1=40°

解得;1=70°,∠2=110°

∴∠DEM=110°

由折疊可知:∠DEF=DEM=55°

∵∠DEF+EFC=180°

∴∠EFC=125°

故選;B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.

(1)直接寫出A、B、C三點的坐標(biāo)和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點B的坐標(biāo)為(3,0),將直線y=kx沿y軸向上平移3個單位長度后恰好經(jīng)過B,C兩點.

(1)求直線BC及拋物線的解析式;
(2)設(shè)拋物線的頂點為D,點P在拋物線的對稱軸上,且∠APD=∠ACB,求點P的坐標(biāo);
(3)連接CD,求∠OCA與∠OCD兩角和的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的兩邊分別是2cm和3cm,現(xiàn)從長度分別為1cm、2cm、3cm、4cm、5cm、6cm六根小木棒中隨機抽一根,抽到的木棒能作為該三角形第三邊的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D為BC邊的任意一點,以點D為頂點的∠EDF的兩邊分別與邊AB,AC交于點E、F,且∠EDF與∠A互補.
(1)如圖1,若AB=AC,D為BC的中點時,則線段DE與DF有何數(shù)量關(guān)系?請直接寫出結(jié)論;

(2)如圖2,若AB=kAC,D為BC的中點時,那么(1)中的結(jié)論是否還成立?若成立,請給出證明;若不成立,請寫出DE與DF的關(guān)系并說明理由;

(3)如圖3,若 =a,且 =b,直接寫出 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.

(1)求甲選擇A部電影的概率;

(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F,若BF=12,AB=10,則AE的長為( )

A.13
B.14
C.15
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形紙片ABC中,點D在邊AB(不包含端點AB)上運動,連接CD,將ADC對折,點A落在直線CD上的點A′處,得到折痕DE;將BDC對折,點B落在直線CD上的點B′處,得到折痕DF

1)若ADC=80°,求BDF的度數(shù);

2)試問EDF的大小是否會隨著點D的運動而變化?若不變,求出EDF的大;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D 的邊AC上,要判斷 相似,添加一個條件,不正確的是( )

A.
B.  
C.
D.

查看答案和解析>>

同步練習(xí)冊答案