【題目】已知直線l⊙O,AB⊙O的直徑,AD⊥l于點D

1)如圖,當(dāng)直線l⊙O相切于點C時,求證:AC平分∠DAB

2)如圖,當(dāng)直線l⊙O相交于點E,F時,求證:∠DAE=∠BAF

【答案】見解析

【解析】試題分析:(1)連接OC,易得OC∥AD,根據(jù)平行線的性質(zhì)就可以得到∠DAC=∠ACO,再根據(jù)OA=OC得到∠ACO=∠CAO,就可以證出結(jié)論;(2)如圖,連接BF,由AB⊙O的直徑,根據(jù)直徑所對的圓周角是直角,可得∠AFB=90°,由三角形外角的性質(zhì),可求得∠AEF的度數(shù),又由圓的內(nèi)接四邊形的性質(zhì),繼而證得結(jié)論.

試題解析:(1)連接OC,

直線l⊙O相切于點C

∴OC⊥CD;

∵AD⊥CD,

∴AD∥OC

∴∠DAC=∠ACO;

∵OA=OC,

∴∠ACO=∠CAO,

∴∠DAC=∠CAO,

AC平分∠DAB

2)如圖,連接BF

∵AB⊙O的直徑,

∴∠AFB=90°

∴∠BAF=90°﹣∠B,

∴∠AEF=∠ADE+∠DAE

⊙O中,四邊形ABFE是圓的內(nèi)接四邊形,

∴∠AEF+∠B=180°,

∴∠BAF=∠DAE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若ab=3,a﹣2b=5,則a2b﹣2ab2的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,(10分)AB∥DE,試問∠B、∠E、∠BCE有什么關(guān)系.

解:∠B∠E∠BCE

過點CCF∥AB

____( )

∵AB∥DE,AB∥CF,

∴____________( )

∴∠E∠____( )

∴∠B∠E∠1∠2

∠B∠E∠BCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年級組織學(xué)生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統(tǒng)計圖反映了學(xué)生報名參加夏令營的情況,請你根據(jù)圖中的信息回答下列問題:

(1)該年級報名參加丙組的人數(shù)為 ;

(2)該年級報名參加本次活動的總?cè)藬?shù) ,并補全頻數(shù)分布直方圖;

(3)根據(jù)實際情況,需從甲組抽調(diào)部分同學(xué)到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在式子3m+5n-k中,當(dāng)m=-2,n=1時,它的值為1;當(dāng)m=2,n=-3時,它的值是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課題組為了解全市八年級學(xué)生對數(shù)學(xué)知識的掌握情況,在一次數(shù)學(xué)檢測中,從全市24000名八年級考生中隨機抽取部分學(xué)生的數(shù)學(xué)成績進行調(diào)查,并將調(diào)查結(jié)果繪制成如下圖表:

請根據(jù)以上圖表提供的信息,解答下列問題:

(1)表中所表示的數(shù)分別為:= ,= ;

(2)請在圖中,補全頻數(shù)分布直方圖;

(3)如果把成績在90分以上(含90分)定為優(yōu)秀,那么該市24000名八年級考生數(shù)學(xué)成績?yōu)閮?yōu)秀的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1、

2、

3-49=0

4、

5、=-8

5、1-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=-2x+1的圖象經(jīng)過  (  )

A. 第一、三象限 B. 第一、、四象限 C. 第一、四象限 D. 第二、、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若y=x+2﹣b是正比例函數(shù),則b的值是( )
A.0
B.﹣2
C.2
D.﹣0.5

查看答案和解析>>

同步練習(xí)冊答案