【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點,與y軸交于點C,其頂點為點D,點E的坐標為(0,﹣1),該拋物線與BE交于另一點F,連接BC.

(1)求該拋物線的解析式,并用配方法把解析式化為y=a(x﹣h)2+k的形式;

(2)若點H(1,y)在BC上,連接FH,求△FHB的面積;

(3)一動點M從點D出發(fā),以每秒1個單位的速度平沿行與y軸方向向上運動,連接OM,BM,設運動時間為t秒(t>0),在點M的運動過程中,當t為何值時,∠OMB=90°?

(4)在x軸上方的拋物線上,是否存在點P,使得∠PBF被BA平分?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

【答案】(1)y=﹣(x﹣2)2+;(2)(3);(4)在x軸上方的拋物線上,存在點P,使得∠PBF被BA平分,P(,).

【解析】

試題分析:(1)用待定系數(shù)法求出拋物線解析式;(2)先求出GH,點F的坐標,用三角形的面積公式計算即可;(3)設出點M,用勾股定理求出點M的坐標,從而求出MD,最后求出時間t;(4)由∠PBF被BA平分,確定出過點B的直線BN的解析式,求出此直線和拋物線的交點即可.

試題解析:(1)∵拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點,

,

∴拋物線解析式為y=﹣x2+x﹣2=﹣(x﹣2)2+;

(2)如圖1,

過點A作AH∥y軸交BC于H,BE于G,

由(1)有,C(0,﹣2),

∵B(0,3),

∴直線BC解析式為y=x﹣2,

∵H(1,y)在直線BC上,

∴y=﹣,

∴H(1,﹣),

∵B(3,0),E(0,﹣1),

∴直線BE解析式為y=﹣x﹣1,

∴G(1,﹣),

∴GH=,

∵直線BE:y=﹣x﹣1與拋物線y=﹣x2+x﹣2相較于F,B,

∴F(,﹣),

∴S△FHB=GH×|xG﹣xF|+GH×|xB﹣xG|

=GH×|xB﹣xF|

=××(3﹣

=

(3)如圖2,

由(1)有y=﹣x2+x﹣2,

∵D為拋物線的頂點,

∴D(2,),

∵一動點M從點D出發(fā),以每秒1個單位的速度平沿行與y軸方向向上運動,

∴設M(2,m),(m>),

∴OM2=m2+4,BM2=m2+1,AB2=9,

∵∠OMB=90°,

∴OM2+BM2=AB2,

∴m2+4+m2+1=9,

∴m=或m=﹣(舍),

∴M(0,),

∴MD=,

∵一動點M從點D出發(fā),以每秒1個單位的速度平沿行與y軸方向向上運動,

∴t=;

(4)存在點P,使∠PBF被BA平分,

如圖3,

∴∠PBO=∠EBO,

∵E(0,﹣1),

∴在y軸上取一點N(0,1),

∵B(3,0),

∴直線BN的解析式為y=﹣x+1①,

∵點P在拋物線y=﹣x2+x﹣2②上,

聯(lián)立①②得,(舍),

∴P(,),

即:在x軸上方的拋物線上,存在點P,使得∠PBF被BA平分,P(,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知A(a,-3),B(1,b),線段ABx軸,且AB=3.a<1,則ab________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(

A.a2·a3a5B.a23a5C.a10÷a2a5D.2a5a52

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五名同學星期天干家務活的時間分別是5,3,22, 4小時,則這組數(shù)據(jù)的中位數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】股民小張星期五買某公司股票1000股,每股14.80元,表為第二周星期一至星期五每日該股票漲跌情況.

1)星期三收盤時,每股是多少元?

2)本周內最高價是每股多少元?最低價是每股多少元?

3)已知小張買進股票時付了成交額0.15%的手續(xù)費,賣出時付了成交額0.15%的手續(xù)費和成交額0.1%的交易稅,如果小張在星期五收盤前將全部股票賣出,那么他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算中,正確的是(

A.x23x5B.x2+2x33x5C.(﹣ab3a3bD.x3x3x6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中只是軸對稱圖形,而不是中心對稱圖形的是( ).

A. 平行四邊形 B. 矩形 C. 菱形 D. 等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題6分)下列是用火柴棒拼出的一列圖形.

仔細觀察,找出規(guī)律,解答下列各題:

(1)第4個圖中共有_____ 根火柴,第6個圖中共有_____ 根火柴;

(2)第n個圖形中共有_____ 根火柴(用含n的式子表示);

(3)請計算第2013個圖形中共有多少根火柴?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自主服裝品牌設計出了一種西裝和領帶,西裝每套定價200元,領帶每條定價40元.在推廣服裝品牌初期開展促銷活動,可以同時向客戶提供兩種優(yōu)惠方案:

方案買一套西裝送一條領帶;

方案西裝和領帶都按定價的90%付款.

現(xiàn)某客戶要到該服裝品牌購買西裝20套,領帶條(超過20).

1)若該客戶按方案購買,需付款_ _____元(用含的式子表示);

若該客戶按方案購買,需付款__ ____元(用含的式子表示);

2)若=30,通過計算說明此時按哪種方案購買較為合算?

3)當=30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,并計算出所需的錢數(shù).

查看答案和解析>>

同步練習冊答案