【題目】如圖,等腰三角形ABC的底邊BC4,面積為24,AC的垂直平分線EF分別交邊AC,AB于點E,F,DBC邊的中點,M為線段EF上一動點,CDM的周長的最小值為 (  )

A.8B.10C.12D.14

【答案】D

【解析】

連接AD,根據(jù)等腰三角形的性質以及垂直平分線的性質結合三角形的面積公式求出AD的長,再根據(jù)垂直平分線的性質知點C關于直線EF的對稱點為點A,故A、M、D共線時CDM的周長的最小,由此即可得出結論.

連接AD,

∵△ABC是等腰三角形,點DBC邊的中點,

ADBC,

,

解得AD=12,

EF是線段AC的垂直平分線,

∴點C關于直線EF的對稱點為點A

AD的長為CM+MD的最小值,

∴△CDM的周長最短

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBCECD中點,連接AE并延長AEBC的延長線于點F

1)求證:CFAD.

2)若AD3,AB8,當BC為多少時,點B在線段AF的垂直平分線上,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣實施村村通工程中,決定在A、B兩村之間修筑一條公路,甲、乙兩個工程隊分別從A、B兩村同時開始修筑,施工期間,乙隊因另有任務提前離開,余下的任務由甲隊單獨完成,直到道路修通,下圖是甲、乙兩個工程隊修道路長度y(米)與修筑時間x(天)之間的函數(shù)圖象,請根據(jù)圖象所提供的信息,解答下列問題:

1)寫出乙工程隊修道路的長度y與修筑時間x之間的函數(shù)關系式:_____;

2)甲工程隊前8天所修公路為_____米,該公路的總長度為_____米;

3)若乙工程隊不提前離開,則兩隊只需_____天就能完成任務;

4)甲、乙兩工程隊第_____天時所修道路的長度相差80米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在圓O中,C是弦AB上的一點,聯(lián)結OC并延長,交劣弧AB于點D,聯(lián)結AO、BO、

AD、BD.已知圓O的半徑長為5,弦AB的長為8.

(1)如圖1,當點D是弧AB的中點時,求CD的長;

(2)如圖2,設AC=x,=y,求y關于x的函數(shù)解析式并寫出定義域;

(3)若四邊形AOBD是梯形,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費用為(元),在乙園所需總費用為(元),、之間的函數(shù)關系如圖所示.

1)甲采摘園的門票是_____,兩個采摘園優(yōu)惠前的草莓單價是每千克____

2)當時,求的函數(shù)表達式;

3)游客在“春節(jié)期間”采摘多少千克草莓時,甲、乙兩家采摘園的總費用相同.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABC和ACB的平分線交于點E,過點E作MNBC交AB于M,交AC于N,若BM+CN=10,則線段MN的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BADBCE均為等腰直角三角形,∠BAD =BCE = 90°,點MAN的中點,過點EAD平行的直線交射線AM于點N。

1)當A,BC三點在同一直線上時(如圖1),求證:AD=NE ;

2)將圖1中的BCE繞點B旋轉,當AB,E三點在同一直線上時(如圖2),求證:ACN為等腰直角三角形;

3)將圖1BCE繞點B旋轉到圖3位置時,(2)中的結論是否仍成立?若成立,請證明;若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由點P(14,1),A(,0),B(0,)(),確定的△PAB的面積為18,則的值為_________,如果,則的值為_____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,CACB, AG平分∠BACBCH,BGAG,垂足為G.若AH8,則BG的長為(

A.3B.5C.8D.4

查看答案和解析>>

同步練習冊答案