【題目】如圖,已知菱形ABCD的對角線相交于點(diǎn)O,延長AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
【答案】
(1)證明:∵菱形ABCD,
∴AB=CD,AB∥CD,
又∵BE=AB,
∴BE=CD,BE∥CD,
∴四邊形BECD是平行四邊形,
∴BD=EC
(2)解:∵平行四邊形BECD,
∴BD∥CE,
∴∠ABO=∠E=50°,
又∵菱形ABCD,
∴AC丄BD,
∴∠BAO=90°﹣∠ABO=40°
【解析】(1)根據(jù)菱形的對邊平行且相等可得AB=CD,AB∥CD,然后證明得到BE=CD,BE∥CD,從而證明四邊形BECD是平行四邊形,再根據(jù)平行四邊形的對邊相等即可得證;(2)根據(jù)兩直線平行,同位角相等求出∠ABO的度數(shù),再根據(jù)菱形的對角線互相垂直可得AC⊥BD,然后根據(jù)直角三角形兩銳角互余計算即可得解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班7名女生的體重(單位:kg)分別是35、37、38、40、42、42、74,這組數(shù)據(jù)的眾數(shù)是( )
A. 74B. 44C. 42D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點(diǎn),直線平行于直線EC,且直線與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點(diǎn)A恰好落在直線上, 則DF的長為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC,若三角形ABC的邊長為1,AE=2,則CD的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A,B,O,C為數(shù)軸上四點(diǎn),點(diǎn)A對應(yīng)數(shù)a(a<﹣2),點(diǎn)O對應(yīng)0,點(diǎn)C對應(yīng)3,AB=2 (AB表示點(diǎn)A到點(diǎn)B的距離).
(1)填空:點(diǎn)C到原點(diǎn)O的距離 ,:點(diǎn)B對應(yīng)的數(shù) .(用含有a的式子)
(2)如圖2,將一刻度尺放在數(shù)軸上,刻度尺上“6cm”和“8.7cm”分別對應(yīng)數(shù)軸上的點(diǎn)O和點(diǎn)C,若BC=5,求a的值和點(diǎn)A在刻度尺上對應(yīng)的刻度.
(3)如圖3,在(2)的條件下,點(diǎn)A以1單位長度/秒的逮度向右運(yùn)動,同時點(diǎn)C向左運(yùn)動,若運(yùn)動3秒時,點(diǎn)A和點(diǎn)C到原點(diǎn)D的距離相等,求點(diǎn)C的運(yùn)動速度.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點(diǎn)(1,2),則它的圖象也一定經(jīng)過( 。
A.(1,﹣2)B.(﹣1,2)C.(﹣2,1)D.(﹣1,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠B+∠D=260°,那么∠A的度數(shù)是( 。
A. 130° B. 100° C. 50° D. 80°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com