學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA ,這時sadA=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的. 根據(jù)上述關(guān)于角的正對定義,解決下列問題:
【小題1】sad的值為( ▲ )
A. | B.1 | C. | D.2 |
A. | B. | C. |
D. |
【小題1】根據(jù)正對定義,
當(dāng)頂角為60°時,等腰三角形底角為60°,
則三角形為等邊三角形,
則sad60°==1.
故選B.(3分)
【小題2】當(dāng)∠A接近0°時,sadα接近0,
當(dāng)∠A接近180°時,等腰三角形的底接近于腰的二倍,故sadα接近2.
于是sadA的取值范圍是0<sadA<2.
故答案為0<sadA<2.(6分)
【小題3】如圖,在△ABC中,∠ACB=90°,sin∠A=.
在AB上取點D,使AD=AC,
作DH⊥AC,H為垂足,令BC=3k,AB=5k,
則AD=AC==4k,
又∵在△ADH中,∠AHD=90°,sin∠A=.
∴DH=ADsin∠A=k,AH==k.
則在△CDH中,CH=AC﹣AH=k,CD==k.
于是在△ACD中,AD=AC=4k,CD=k.
由正對的定義可得:sadA==,即sadα=.(12分)
解析
科目:初中數(shù)學(xué) 來源: 題型:
底邊 |
腰 |
BC |
AB |
1 |
2 |
| ||
2 |
3 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 |
2 |
2 |
2 |
3 |
3 |
3 |
5 |
2-2
|
2-2
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A. | B.1 | C. | D.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年南京市六合區(qū)中考數(shù)學(xué)一模試卷 題型:解答題
(本小題滿分10分)
學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 的值為( )A. B. 1 C. D. 2
(2)對于,∠A的正對值sad A的取值范圍是 .
(3)已知,其中為銳角,試求sad的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com