【題目】如圖,△ABC是等邊三角形,D是AC上一點,BD=CE,∠1=∠2,試判斷BC與AE的位置關(guān)系,并證明你的結(jié)論.

【答案】解:BC與AE的位置關(guān)系是:BC∥AE;理由如下:
∵△ABC是等邊三角形,
∴∠BAD=∠BCA=60°,AB=AC,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠BAD=∠CAE=60°,
∴∠CAE=∠BCA,
∴BC∥AE
【解析】根據(jù)已知條件△ABC是等邊三角形,證出∠BAD=∠BCA=60°,AB=AC,由已知可證得△ABD≌△ACE,得出∠BAD=∠CAE=60°,從而證得∠CAE=∠BCA,再根據(jù)平行線的判定即可證得結(jié)論。
【考點精析】掌握平行線的判定和等邊三角形的性質(zhì)是解答本題的根本,需要知道同位角相等,兩直線平行;內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補,兩直線平行;等邊三角形的三個角都相等并且每個角都是60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶樱蚩梢郧蟪鲆恍┎灰(guī)則圖形的面積.
(1)如圖1,是將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的方法計算這個圖形的面積,你能發(fā)現(xiàn)什么結(jié)論,請寫出來.
(2)如圖2,是將兩個邊長分別為a和b的正方形拼在一起,B、C、G三點在同一直線上,連接BD和BF,若兩正方形的邊長滿足a+b=10,ab=20,你能求出陰影部分的面積嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E為等腰△ABC的底邊BC上一動點,過E作EF⊥BC交AB于D,交CA的延長線于F,問:

(1)∠F與∠ADF的關(guān)系怎樣?說明理由;
(2)若E在BC延長線上,其余條件不變,上題的結(jié)論是否成立?若不成立,說明理由;若成立,畫出圖形并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,DE⊥AB于點E.

(1)求證:△ACD≌△AED

(2)若AC=5,△DEB的周長為8,求△ABC的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點P—1,—2)關(guān)于原點對稱點的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1,0,﹣2,﹣1中,最大的數(shù)是( 。

A. 1 B. 0 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC,CD⊥AB于點D,BE⊥AC于點E,BE與CD相交于點O.

(1)求證:AD=AE;
(2)試猜想:OA與BC的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:2m2﹣(53m2+7m+23m2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽每天從東方升起,這是一個_____________事件(填確定隨機”).

查看答案和解析>>

同步練習(xí)冊答案