【題目】疫情后復學,某校為了了解九年級線上教學期間學生知識掌握情況,舉行了線上教學質(zhì)量調(diào)研測試,張老師根據(jù)測試結果,對本班部分學生進行了分析,他將結果分為四類,:優(yōu)秀;:良好;:合格;:不合格,并將結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:


1)張老師一共調(diào)查了_________名同學;

2類所占扇形圓心角的度數(shù)是_________;

3)將上面條形統(tǒng)計圖補充完整;

4)為了共同進步,張老師想從被調(diào)查的類和類學生中各隨機選取一位同學進行一幫一互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好都是女同學的概率.

【答案】120;(236°;(3)詳見解析;(4

【解析】

1)用B類的人數(shù)除以它所占的百分比即可得到本次調(diào)查的學生數(shù);

2)用360°乘以D類別所占百分比可得其圓心角度數(shù);

3)總人數(shù)乘以C類別百分比,再減去男生人數(shù)可得C類別女生人數(shù),總人數(shù)減去AB、CD類別女生人數(shù)求得男生人數(shù),即可補全條形圖;

4)先畫樹狀圖展示6種等可能的結果數(shù),再找出恰好是一位男同學和一位女同學的結果數(shù),然后根據(jù)概率公式計算.

1)本次調(diào)查的學生數(shù)=10÷50%=20(名),

故答案為:20

2(),

故答案為:36°;

3C類學生數(shù)=20×25%=5,則C類女生數(shù)=5-2=3(名);
D類學生數(shù)=20-3-10-5=2(名),則D類男生有1名,
補充條形統(tǒng)計圖如下圖;

4)由題意,畫樹形圖如下圖所示:

從樹形圖看出,所有可能出現(xiàn)的結果共有6種,且每種結果出現(xiàn)的可能性相等,所選兩位同學恰好都是女同學的結果共有2種.

所以(所選兩位同學恰好都是女同學)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有四個小球,上面分別標有數(shù)字﹣2,﹣1,01,它們除了數(shù)字不同外,其它完全相同.

1)隨機從袋子中摸出一個小球,摸出的球上面標的數(shù)字為正數(shù)的概率是   

2)小聰先從袋子中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內(nèi)點M的橫坐標;然后放回攪勻,接著小明從袋子中隨機摸出一個小球,記下數(shù)字作為點M的縱坐標.如圖,已知四邊形ABCD的四個頂點的坐標分別為A(﹣20),B0,﹣2),C10),D0,1),請用畫樹狀圖或列表法,求點M落在四邊形ABCD所圍成的部分內(nèi)(含邊界)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B4,0),C0,2)三點,點D與點C關于軸對稱,點P軸上的一個動點,設點P的坐標為(,0),過點P軸的垂線l交拋物線于點Q,交直線BD于點M

1)求該拋物線所表示的二次函數(shù)的表達式;

2)點P在線段AB運動過程中,是否存在點Q,使得BOD∽△QBM?若存在,求出點Q的坐標;若不存在,請說明理由.

3)已知點F0,),當點P軸上運動時,試求為何值時,以D,MQ,F為頂點的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖11,一轉盤被等分成三個扇形,上面分別標有關-1,1,

2中的一個數(shù),指針位置固定,轉動轉盤后任其自由停止,這時,鞭個扇形恰好停在指針所

指的位置,并相應得到這個扇形上的數(shù)(若指針恰好指在等分線上,當做指向右邊的扇形).

若小靜轉動轉盤一次,求得到負數(shù)的概率;

小宇和小靜分別轉動一次,若兩人得到的數(shù)相同,則稱兩人不謀而合,用列表法(或畫樹形圖)求兩人不謀而合的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖像與x軸相交于點A和點B(點A在點B的左側),與y軸相交于點C.一次函數(shù)的圖像與y軸相交于點D,其中

1)分別求出A、B、C三點的坐標(可以用含有字母a的代數(shù)式表示).

2)點P與點C關于拋物線的對稱軸成軸對稱,點Q為拋物線上的一個動點.

①試說明點P在直線的圖像上.

②若點Q在拋物線上有且只有三個位置滿足,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,且,,在一條直線上,,連接,交于點,連接.下列結論:①;②;③;④平分.其中正確的是(

A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,RtABC中:C90°AB6,在AB上取點O,以O為圓心,以OB為半徑作圓,與AC相切于點D,并分別與ABBC相交于點E,F(異于點B).

1)求證:BD平分ABC;

2)若點E恰好是AO的中點,求弧BF的長;

3)若CF的長為1,求O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC,A1B1C1A2B2C2,A3B3C3AnBnCn都是等腰直角三角形,點BB1,B2B3Bn都在x軸上,點B1與原點重合,點A,C1,C2C3Cn都在直線lyx+上,點Cy軸上,ABA1B1A2B2AnBny軸,ACA1C1A2C2AnCnx軸,若點A的橫坐標為﹣1,則點Cn的縱坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題提出):有同樣大小正方形256個,拼成如圖1所示的的一個大的正方形.請問如果用一條直線穿過這個大正方形的話,最多可以穿過多少個小正方形?

(問題探究):我們先考慮以下簡單的情況:一條直線穿越一個正方形的情況.(如圖2

從圖中我們可以看出,當一條直線穿過一個小正方形時,這條直線最多與正方形上、下、左、右四條邊中的兩個邊相交,所以當一條直線穿過一個小正方形時,這條直線會與其中某兩條邊產(chǎn)生兩個交點,并且以兩個交點為頂點的線段會全部落在小正方形內(nèi).

這就啟發(fā)我們:為了求出直線最多穿過多少個小正方形,我們可以轉而去考慮當直線穿越由小正方形拼成的大正方形時最多會產(chǎn)生多少個交點.然后由交點數(shù)去確定有多少根小線段,進而通過線段的根數(shù)確定下正方形的個數(shù).

再讓我們來考慮正方形的情況(如圖3):

為了讓直線穿越更多的小正方形,我們不妨假設直線右上方至左下方穿過一個的正方形,我們從兩個方向來分析直線穿過正方形的情況:從上下來看,這條直線由下至上最多可穿過上下平行的兩條線段;從左右來看,這條直線最多可穿過左右平行的四條線段;這樣直線最多可穿過的大正方形中的六條線段,從而直線上會產(chǎn)生6個交點,這6個交點之間的5條線段,每條會落在一個不同的正方形內(nèi),因此直線最多能經(jīng)過5個小正方形.

(問題解決):

1)有同樣大小的小正方形16個,拼成如圖4所示的的一個大的正方形.如果用一條直線穿過這個大正方形的話,最多可以穿過_________個小正方形.

2)有同樣大小的小正方形256個,拼成的一個大的正方形.如果用一條直線穿過這個大正方形的話,最多可以穿過___________個小正方形.

3)如果用一條直線穿過的大正方形的話,最多可以穿過___________個小正方形.

(問題拓展):

4)如果用一條直線穿過的大長方形的話(如圖5),最多可以穿過個___________小正方形.

5)如果用一條直線穿過的大長方形的話(如圖6),最多可以穿過___________個小正方形.

6)如果用一條直線穿過的大長方形的話,最多可以穿過________個小正方形.

(類比探究):

由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個面,類比上面問題解決的方法解決如下問題:

7)如圖7有同樣大小的小正方體8個,拼成如圖所示的的一個大的正方體.如果用一條直線穿過這個大正方體的話,最多可以穿過___________個小正方體.

8)如果用一條直線穿過的大正方體的話,最多可以穿過_________個小正方體.

查看答案和解析>>

同步練習冊答案