【題目】甲布袋中有三個紅球,分別標(biāo)有數(shù)字1,2,3;乙布袋中有三個白球,分別標(biāo)有數(shù)字2,3,4.這些球除顏色和數(shù)字外完全相同.小亮從甲袋中隨機摸出一個紅球,小剛從乙袋中隨機摸出一個白球.

(1)用畫樹狀圖(樹形圖)或列表的方法,求摸出的兩個球上的數(shù)字之和為6的概率;

(2)小亮和小剛做游戲,規(guī)則是:若摸出的兩個球上的數(shù)字之和為奇數(shù),小亮勝;否則,小剛勝.你認為這個游戲公平嗎?為什么?

【答案】(1)P(兩個球上的數(shù)字之和為6)=;(2)不公平,理由見解析.

【解析】

試題(1)根據(jù)題意列表,求出所以可能的結(jié)果,然后應(yīng)用概率公式求解;

2)游戲是否公平,關(guān)鍵要看游戲雙方獲勝的機會是否相等,即判斷雙方取勝的概率是否相等,或轉(zhuǎn)化為在總情況明確的情況下,判斷雙方取勝所包含的情況數(shù)目是否相等.

試題解析:(1)畫樹狀圖如下:

列表:


2

3

4

1

1,2

13

1,4

2

2,2

23

24

3

3,2

3,3

3,4

=

2)不公平.理由如下:

=,=,

這個游戲不公平.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=1,ab=-1.設(shè)

(1)計算S2;

(2)請閱讀下面計算S3的過程:

=

=

=

∵a+b=1,ab=-1,

_______.

你讀懂了嗎?請你先填空完成(2)中S3的計算結(jié)果;再計算S4;

(3)猜想并寫出, , 三者之間的數(shù)量關(guān)系(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關(guān)系計算S3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點關(guān)于x軸的對稱點和點關(guān)于y軸的對稱點相同,則點關(guān)于x軸對稱的點的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+1x軸,y軸分別交于B,A兩點,動點P在線段AB上移動,以P為頂點作OPQ=45°x軸于點Q

1)求點A和點B的坐標(biāo);

2)比較AOPBPQ的大小,說明理由.

3)是否存在點P,使得OPQ是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1kxb的圖象與反比例函數(shù)y2的圖象交于A(m,3),B(3,n)兩點.

(1)求一次函數(shù)的解析式;

(2)觀察函數(shù)圖象,直接寫出關(guān)于x的不等式kxb的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,.在射線上,利用圖,畫圖說明命題有兩邊和其中一邊的對角分別相等的兩個三角形全等是假命題.你畫圖時,選取的的長約為__________(精確到0.1.

2為銳角,,點在射線上,點到射線的距離為,,若的形狀、大小是唯一確定的,則的取值范圍是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長城科技公司生產(chǎn)銷售一種電子產(chǎn)品,該產(chǎn)品總成本包括技術(shù)成本、制造成本、銷售成本三部分,經(jīng)核算,年該產(chǎn)品各部分成本所占比例約為.且年該產(chǎn)品的技術(shù)成本、制造成本分別為萬元、萬元.

確定的值,并求年產(chǎn)品總成本為多少萬元;

為降低總成本,該公司年及年增加了技術(shù)成本投入,確保這兩年技術(shù)成本都比前一年增加一個相同的百分數(shù),制造成本在這兩年里都比前一年減少一個相同的百分數(shù);同時為了擴大銷售量,年的銷售成本將在年的基礎(chǔ)上提高,經(jīng)過以上變革,預(yù)計年該產(chǎn)品總成本達到年該產(chǎn)品總成本的,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AE平分∠BAD,交BCE,過EEF⊥ADF,連接BFAEP,連接PD.

(1)求證:四邊形ABEF是正方形;

(2)如果AB=6,AD=8,求tan∠ADP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實踐與應(yīng)用:

一個西瓜放在桌子上用刀切下去,一刀可以切成2塊,2刀最多可以切成4塊;3刀最多可以切成7塊,4刀最多可以切成11塊(如圖).

上述問題轉(zhuǎn)化為數(shù)學(xué)模型實際上就是n條直線最多把平面分成幾塊的問題,有沒有規(guī)律呢?請先進行試驗,然后回答以下問題.

(1)填表:

(2)設(shè)n條直線把平面最多分成的塊數(shù)是S,請寫出S關(guān)于n的表達式.(不需要解題過程)

查看答案和解析>>

同步練習(xí)冊答案