【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F.若AC=3,AB=5,則CE的長(zhǎng)為(  )

A. B. C. D.

【答案】A

【解析】試題解析:過(guò)點(diǎn)FFGAB于點(diǎn)G,

∵∠ACB=90°,CDAB,∴∠CDA=90°,∴∠CAF+CFA=90°,FAD+AED=90°,AF平分∠CAB,∴∠CAF=FAD,∴∠CFA=AED=CEF,CE=CFAF平分∠CAB,ACF=AGF=90°,FC=FG,∵∠B=B,FGB=ACB=90°,∴△BFG∽△BAC,,AC=3,AB=5,ACB=90°,BC=4,,FC=FG,,解得:FC=,即CE的長(zhǎng)為.故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)國(guó)家郵政局公布的數(shù)據(jù)顯示,2016年中國(guó)快遞業(yè)務(wù)量突破313.5億件,同比增長(zhǎng)51.7%,快遞業(yè)務(wù)量位居世界第一,業(yè)內(nèi)人士表示,快遞業(yè)務(wù)連續(xù)6年保持50%以上的高速增長(zhǎng),已成為中國(guó)經(jīng)濟(jì)的一匹“黑馬”,未來(lái)中國(guó)快遞業(yè)務(wù)仍將保持快速增長(zhǎng)勢(shì)頭,以下是根據(jù)相關(guān)數(shù)據(jù)繪制的統(tǒng)計(jì)圖,請(qǐng)你預(yù)估2017年全國(guó)快遞的業(yè)務(wù)量大約為(精確的0.1)億元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以半徑為1的圓的內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則該三角形的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)得到線段AD,其中連結(jié)BD,CD,

,在圖1中補(bǔ)全圖形,并寫出m值.

如圖2,當(dāng)為鈍角,時(shí),m值是否發(fā)生改變?證明你的猜想.

如圖3,,BDAC相交于點(diǎn)O,求的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正比例函數(shù)y1=k1x(k1>0)與反比例函數(shù)y2= (k2>0)部分圖象如圖所示,則不等式k1x> 的解集在數(shù)軸上表示正確的是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面積.

(2)若每種植1平方米草皮需要200元,問(wèn)總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,老師提出了一個(gè)問(wèn)題:

我們知道,三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和,那么三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在何種數(shù)量關(guān)系?

(1)獨(dú)立思考,請(qǐng)你完成老師提出的問(wèn)題:

如圖所示,已知∠DBC和∠BCE分別為△ABC的兩個(gè)外角,試探究∠A和∠DBC,∠BCE之間的數(shù)量關(guān)系.

合作交流,“創(chuàng)新小組”受此問(wèn)題的啟發(fā):分別作外角∠CBD和∠BCE的平分線BFCF,交于點(diǎn)F(如圖所示),那么∠A與∠F之間有何數(shù)量關(guān)系請(qǐng)寫出解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱軸為x=1,點(diǎn)B坐標(biāo)為(﹣1,0).則下面的四個(gè)結(jié)論:
①2a+b=0;②4a﹣2b+c<0;③ac>0;④當(dāng)y<0時(shí),x<﹣1或x>2.
其中正確的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE交AE延長(zhǎng)線于D,DM⊥AC交AC的延長(zhǎng)線于M,連接CD,以下四個(gè)結(jié)論:

①∠ADC=45°;②BD=AE;③AC+CE=AB;④AC+AB=2AM.其中正確的結(jié)論有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案