【題目】已知a-3b=5,則2(a-3b)2+3b-a-15的值是( )
A.25
B.30
C.35
D.40
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN∥BC,BD⊥DC,∠1=∠2=60°.
(1)AB與DE平行嗎?請(qǐng)說明理由;
(2)若DC是∠NDE的平分線.
①試說明∠ABC=∠C;
②試說明BD是∠ABC的平分線.
(要求:第(1)小題要寫出每一步的理由,第(2)小題的理由可省略不寫.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動(dòng)點(diǎn)S從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)至點(diǎn)B后,立即按原路返回,點(diǎn)S在運(yùn)動(dòng)過程中速度不變,則以點(diǎn)B為圓心,線段BS長(zhǎng)為半徑的圓的面積m與點(diǎn)S的運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2.說明:∠DGA+∠BAC=180°.請(qǐng)將說明過程填寫完成.
解:∵EF∥AD,(已知)
∴∠2= . ()
又∵∠1=∠2,()
∴∠1=∠3,()
∴AB∥ , ()
∴∠DGA+∠BAC=180°.()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“城市發(fā)展 交通先行”,成都市今年在中心城區(qū)啟動(dòng)了緩堵保暢的二環(huán)路高架橋快速通道建設(shè)工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時(shí))是車流密度x(單位:輛/千米)的函數(shù),且當(dāng)0<x≤28時(shí),V=80;當(dāng)28<x≤188時(shí),V是x的一次函數(shù).函數(shù)關(guān)系如圖所示.
(1)求當(dāng)28<x≤188時(shí),V關(guān)于x的函數(shù)表達(dá)式;
(2)若車流速度V不低于50千米/時(shí),求當(dāng)車流密度x為多少時(shí),車流量P(單位:輛/時(shí))達(dá)到最大,并求出這一最大值.
(注:車流量是單位時(shí)間內(nèi)通過觀測(cè)點(diǎn)的車輛數(shù),計(jì)算公式為:車流量=車流速度×車流密度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把(+6)﹣(﹣10)+(﹣3)﹣(+2)寫成省略加號(hào)和的形式為( 。
A. 6+10﹣3+2 B. 6﹣10﹣3﹣2 C. 6+10﹣3﹣2 D. 6+10+3﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 所有的等腰三角形都是銳角三角形
B. 等邊三角形屬于等腰三角形
C. 不存在既是鈍角三角形又是等腰三角形的三角形
D. 一個(gè)三角形里有兩個(gè)銳角,則一定是銳角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在已知線段AB的同側(cè)構(gòu)造∠FAB=∠GBA,并且在射線AF,BG上分別取點(diǎn)D和E,在線段AB上取點(diǎn)C,連結(jié)DC和EC.
(1)如圖,若AD=3,BE=1,△ADC≌△BCE.在∠FAB=∠GBA=60或∠FAB=∠GBA=90兩種情況中任選一種,解決以下問題:
①線段AB的長(zhǎng)度是否發(fā)生變化,直接寫出長(zhǎng)度或變化范圍;
②∠DCE的度數(shù)是否發(fā)生變化,直接寫出度數(shù)或變化范圍.
(2)若AD=a,BE=b,∠FAB=∠GBA=α,且△ADC和△BCE這兩個(gè)三角形全等,請(qǐng)求出:
①線段AB的長(zhǎng)度或取值范圍,并說明理由;
②∠DCE的度數(shù)或取值范圍,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com