【題目】已知a-3b=5,則2(a-3b2+3b-a-15的值是(  )
A.25
B.30
C.35
D.40

【答案】B
【解析】∵a-3b=5∴2(a-3b2+3b-a-15
=2(a-3b2-(a-3b)-15
=2×52-5-15
=30.
所以答案是B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解代數(shù)式求值的相關(guān)知識(shí),掌握求代數(shù)式的值,一般是先將代數(shù)式化簡(jiǎn),然后再將字母的取值代入;求代數(shù)式的值,有時(shí)求不出其字母的值,需要利用技巧,“整體”代入.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN∥BC,BD⊥DC,∠1=∠2=60°.

(1)AB與DE平行嗎?請(qǐng)說明理由;
(2)若DC是∠NDE的平分線.
①試說明∠ABC=∠C;
②試說明BD是∠ABC的平分線.
(要求:第(1)小題要寫出每一步的理由,第(2)小題的理由可省略不寫.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a3m=3,b3n=2,求(a2m)3+(bn)3a2m·bn·a4m·b2n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)S從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)至點(diǎn)B后,立即按原路返回,點(diǎn)S在運(yùn)動(dòng)過程中速度不變,則以點(diǎn)B為圓心,線段BS長(zhǎng)為半徑的圓的面積m與點(diǎn)S的運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF∥AD,∠1=∠2.說明:∠DGA+∠BAC=180°.請(qǐng)將說明過程填寫完成.
解:∵EF∥AD,(已知)
∴∠2= . (
又∵∠1=∠2,(
∴∠1=∠3,(
∴AB∥ , (
∴∠DGA+∠BAC=180°.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】城市發(fā)展 交通先行,成都市今年在中心城區(qū)啟動(dòng)了緩堵保暢的二環(huán)路高架橋快速通道建設(shè)工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時(shí))是車流密度x(單位:輛/千米)的函數(shù),且當(dāng)0<x28時(shí),V=80;當(dāng)28<x188時(shí),V是x的一次函數(shù).函數(shù)關(guān)系如圖所示.

(1)求當(dāng)28<x188時(shí),V關(guān)于x的函數(shù)表達(dá)式;

(2)若車流速度V不低于50千米/時(shí),求當(dāng)車流密度x為多少時(shí),車流量P(單位:輛/時(shí))達(dá)到最大,并求出這一最大值.

(注:車流量是單位時(shí)間內(nèi)通過觀測(cè)點(diǎn)的車輛數(shù),計(jì)算公式為:車流量=車流速度×車流密度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把(+6)﹣(﹣10)+(﹣3)﹣(+2)寫成省略加號(hào)和的形式為( 。

A. 6+10﹣3+2 B. 6﹣10﹣3﹣2 C. 6+10﹣3﹣2 D. 6+10+3﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A. 所有的等腰三角形都是銳角三角形

B. 等邊三角形屬于等腰三角形

C. 不存在既是鈍角三角形又是等腰三角形的三角形

D. 一個(gè)三角形里有兩個(gè)銳角,則一定是銳角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在已知線段AB的同側(cè)構(gòu)造∠FAB=∠GBA,并且在射線AF,BG上分別取點(diǎn)D和E,在線段AB上取點(diǎn)C,連結(jié)DC和EC

(1)如圖,若AD=3,BE=1,△ADC≌△BCE.在∠FAB=∠GBA=60或∠FAB=∠GBA=90兩種情況中任選一種,解決以下問題:

①線段AB的長(zhǎng)度是否發(fā)生變化,直接寫出長(zhǎng)度或變化范圍;

②∠DCE的度數(shù)是否發(fā)生變化,直接寫出度數(shù)或變化范圍.

(2)若AD=a,BE=b,∠FAB=∠GBA=α,且△ADC和△BCE這兩個(gè)三角形全等,請(qǐng)求出:

①線段AB的長(zhǎng)度或取值范圍,并說明理由;

②∠DCE的度數(shù)或取值范圍,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案