【題目】點(diǎn)A,O,B依次在直線MN上,如圖1,現(xiàn)將射線OA繞點(diǎn)O順時(shí)針方向以每秒10°的速度旋轉(zhuǎn),同時(shí)射線OB繞著點(diǎn)O按逆時(shí)針方向以每秒15°的速度旋轉(zhuǎn),直線MN保持不動(dòng),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t秒(t≤12).
(1)在旋轉(zhuǎn)過程中,當(dāng)t=2時(shí),求∠AOB的度數(shù).
(2)在旋轉(zhuǎn)過程中,當(dāng)∠AOB=105°時(shí),求t的值.
(3)在旋轉(zhuǎn)過程中,當(dāng)OA或OB是某一個(gè)角(小于180°)的角平分線時(shí),求t的值.
【答案】(1) 130°;(2)t=3或11.4;(3)t=4.5或或9或
【解析】
(1)分別求出∠AOM和∠BON的度數(shù),即可得出答案;
(2)分為兩種情況,得出方程10t+15t=180-105或10t+15t=180+105,求出方程的解即可;
(3)分為四種情況,列出方程,求出方程的解即可.
(1)當(dāng)t=2時(shí),∠AOM=10°t=20°,∠BON=15°t=30°,
所以∠AOB=180°﹣∠AOM﹣∠BON=130°;
(2)當(dāng)∠AOB=105°時(shí),有兩種情況:
①10t+15t=180﹣105,解得:t=3;
②10t+15t=180+105,解得:t=11.4;
(3)①當(dāng)OB是∠AON的角平分線時(shí),10t+15t+15t=180,解得:t=4.5;
②當(dāng)OA是∠BOM的角平分線時(shí),10t+10t+15t=180,解得:t=;
③當(dāng)OB是∠AOM的角平分線時(shí),5t+20t=180,解得:t=9;
④當(dāng)OA是∠BON的角平分線時(shí),10t+7.5t=180,解得:t=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的盒子中放有四張分別寫有數(shù)字1,2,3,4的紅色卡片和三張分別寫有數(shù)字1,2,3的藍(lán)色卡片,卡片除顏色和數(shù)字外完全相同.
(1)從中任意抽取一張卡片,求該卡片上寫有數(shù)字1的概率;
(2)將3張藍(lán)色卡片取出后放入另外一個(gè)不透明的盒子內(nèi),然后在兩個(gè)盒子內(nèi)各任意抽取一張卡片,以紅色卡片上的數(shù)字作為十位數(shù),藍(lán)色卡片上的數(shù)字作為個(gè)位數(shù)組成一個(gè)兩位數(shù),求這個(gè)兩位數(shù)大于22的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過點(diǎn)A(1,0),且當(dāng)x=0和x=5時(shí)所對(duì)應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣ +bx+c的圖象分別交于B,C兩點(diǎn),點(diǎn)B在第一象限.
(1)求二次函數(shù)y=﹣ +bx+c的表達(dá)式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點(diǎn),將點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的邊BC上的任意一點(diǎn),連接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求證:DE=BF+EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD為正方形,點(diǎn)E為線段AC上一點(diǎn),連接DE,過點(diǎn)E作EF⊥DE,交射線BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG.
(1)如圖1,求證:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的長度;
(3)當(dāng)線段DE與正方形ABCD的某條邊的夾角是30°時(shí),直接寫出∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角△ABC中,∠A=90°,∠B=30°,AC=4,以A為圓心,AC長為半徑畫四分之一圓,則圖中陰影部分的面積是(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
如圖1,在∠AOB的內(nèi)部有一條射線OC把∠AOB分成兩個(gè)角,射線OM、ON分別平分∠AOC、∠BOC,試探究∠MON與∠AOB之間的數(shù)量關(guān)系,并說明理由.
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論:
①請(qǐng)你在下表中填上當(dāng)∠AOB為60°、90°、120°時(shí)∠MON的大。
∠AOB的度數(shù) | 60° | 90° | 120° |
∠MON的度數(shù) |
|
|
|
②探索發(fā)現(xiàn):無論∠AOB的度數(shù)是多少,∠MON與∠AOB的數(shù)量關(guān)系是不變的,請(qǐng)你直接寫出結(jié)論:
∠MON ∠AOB.
(2)特例啟發(fā),解答題目:
如圖2,如果∠AOB=α,請(qǐng)你求∠MON的大。ㄓα表示).
(3)拓展結(jié)論,設(shè)計(jì)新題:
如圖3,把一張報(bào)紙的一角斜折過去,使A點(diǎn)落在E點(diǎn)處,BC為折痕,BD是∠EBM的平分線,求∠CBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)長方體的表面展開圖,每個(gè)外表面都標(biāo)注了字母,請(qǐng)根據(jù)要求回答問題:
(1)如果面A在多面體的底部,那么哪一個(gè)面會(huì)在上面?
(2)如果面F在前面,從左面看是面B,那么哪一個(gè)面會(huì)在上面?
(3)如果從右面看是面C,面D在后面,那么哪一個(gè)面會(huì)在上面?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com