【題目】如圖,正方形ABCD的對角線相交于點O,BC=6,延長BC至點E,使得CE=8,點F是DE的中點,連接CF、OF.
(1)求OF的長.
(2)求CF的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)花都?xì)庀笈_“天氣預(yù)報”報道,今天的最低氣溫是17℃,最高氣溫是25℃,則今天氣溫t(℃)的范圍是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在ABCD中,分別以AB,AD為邊向外作等邊△ABE,△ADF,延長CB交AE于點G,點G在點A,E之間,連接CG,CF,則下列結(jié)論不一定正確的是( )
A. △CDF≌△EBC
B. ∠CDF=∠EAF
C. CG⊥AE
D. △ECF是等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D、F分別在線段BC、AB上,∠EFB=60°,DC=EF.
(1)求證:四邊形EFCD是平行四邊形;
(2)若BF=EF,求證:AE=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面我們做一次折疊活動:
第一步,在一張寬為2的矩形紙片的一端,利用圖(1)的方法折出一個正方形,然后把紙片展平,折痕為MC;
第二步,如圖(2),把這個正方形折成兩個相等的矩形,再把紙片展平,折痕為FA;
第三步,折出內(nèi)側(cè)矩形FACB的對角線AB,并將AB折到圖(3)中所示的AD處,折痕為AQ.
根據(jù)以上的操作過程,完成下列問題:
(1)求CD的長.
(2)請判斷四邊形ABQD的形狀,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1) (3a-2b)(9a+6b) (2)(2y-1)(4y2+1)(2y+1)
(3)3(2a+1)(-2a+1)-(a-3)(3+a) (4)[2(m+1)2-(2m+1)(2m-1)-3]÷(-4m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點,一次函數(shù)y1=x+m與反比例函數(shù)y2=的圖象相交于A(2,1),B(n,﹣2)兩點,與x軸交于點C.
(1)求反比例函數(shù)解析式和點B坐標(biāo);
(2)當(dāng)x的取值范圍是 時,有y1>y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鎮(zhèn)江某特產(chǎn)專賣店銷售某種特產(chǎn),其進價為每千克40元,若按每千克60元出售,平均每天可售出100千克,經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低3元,平均每天的銷售量可增加30千克,專賣店銷售這種特產(chǎn)若想要平均每天獲利2240元,且銷售盡可能大,則每千克特產(chǎn)應(yīng)定價為多少元?
(1)解:方法1:設(shè)每千克特產(chǎn)應(yīng)降價x元,由題意,得方程為:_____;
方法2:設(shè)每千克特產(chǎn)降低后定價為x元,由題意,得方程為:_____.
(2)請你選擇一種方法,寫出完整的解答過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com