【題目】如圖,ABC內(nèi)接于⊙O,ABAC2,OBC的距離為OD1,則⊙O的半徑為_____

【答案】

【解析】

連接OA、OB,如圖,先根據(jù)垂徑定理和線段垂直平分線的性質(zhì)得出點A、O、D三點共線,再設O的半徑為x,則ADx+1,BD2x21,然后在ABD中根據(jù)勾股定理可得關于x的方程,解方程即得答案.

解:連接OA、OB,如圖,

ODBC,∴BDDC

OD垂直平分BC,

ABACA在直線OD上,

∴點A、O、D在同一條直線上,

設⊙O的半徑為x,則ADx+1,

OBD中,OB2OD2+BD2,

BD2x21,

ABD中,AB2AD2+BD2,即(22=(x+12+x21,

解得,x1(舍去),x2,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(2,1),(1,1)兩點,則下列關于此二次函數(shù)的說法正確的是【 】

A.y的最大值小于0      B.當x=0時,y的值大于1

C.當x=1時,y的值大于1  D.當x=3時,y的值小于0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC中,AB=2,點D是以A為圓心,半徑為1的圓上一動點,連接CD,取CD的中點E,連接BE,則線段BE的最大值與最小值之和為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,動點A在拋物線y-x2+2x+30≤x≤3)上運動,直線l經(jīng)過點(06),且與y軸垂直,過點AACl于點C,以AC為對角線作矩形ABCD,則另一對角線BD的取值范圍正確的是( 。

A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣x+2分別交x軸、y軸于點A、B.點C的坐標是(﹣1,0),拋物線yax2+bx﹣2經(jīng)過A、C兩點且交y軸于點D.點Px軸上一點,過點Px軸的垂線交直線AB于點M,交拋物線于點Q,連結(jié)DQ,設點P的橫坐標為mm≠0).

(1)求點A的坐標.

(2)求拋物線的表達式.

(3)當以BD、QM為頂點的四邊形是平行四邊形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E、F兩點分別在平行四邊形ABCD的邊CD、AD上,AECFAE、CF相交于點O

1)用尺規(guī)作出∠AOC的角平分線OM(保留作圖痕跡,不寫作法);

2)求證:OM一定經(jīng)過B點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】游泳是一項深受青少年喜愛的體育運動,某中學為了加強學生的游泳安全意識,組織學生觀看了紀實片孩子請不要私自下水”,并于觀看后在本校的名學生中作了抽樣調(diào)查.制作了下面兩個不完整的統(tǒng)計圖.請根據(jù)這兩個統(tǒng)計圖回答以下問題:

(I)這次抽樣調(diào)查中,共調(diào)查了 名學生;

(2)補全兩個統(tǒng)計圖;

(3)根據(jù)抽樣調(diào)查的結(jié)果估算該校名學生中大約有多少人結(jié)伴時會下河學游泳”?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中A點的坐標為(8y),AB⊥x軸于點B,sin∠OAB=,反比例函數(shù)y=的圖象的一支經(jīng)過AO的中點C,且與AB交于點D

1)求反比例函數(shù)解析式;

2)若函數(shù)y=3xy=的圖象的另一支交于點M,求三角形OMB與四邊形OCDB的面積的比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個半徑為的圓形紙片在邊長為的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片不能接觸到的部分的面積是____________.

查看答案和解析>>

同步練習冊答案