【題目】如圖是某地下商業(yè)街的入口,數(shù)學(xué)課外興趣小組的同學(xué)打算運用所學(xué)的知識測量側(cè)面支架的最高點E到地面的距離EF.經(jīng)測量,支架的立柱BC與地面垂直,即∠BCA=90°,且BC=1.5m,點F,A,C在同一條水平線上,斜桿AB與水平線AC的夾角∠BAC=30°,支撐桿DE⊥AB于點D,該支架的邊BE與AB的夾角∠EBD=60°,又測得AD=1m.請你求出該支架的邊BE及頂端E到地面的距離EF的長度.
【答案】解:過B作BH⊥EF于點H,
∴四邊形BCFH為矩形,BC=HF=1.5m,∠HBA=∠BAC=30°,
在Rt△ABC中,
∵∠BAC=30°,BC=1.5m,
∴AB=3m,
∵AD=1m,
∴BD=2m,
在Rt△EDB中,
∵∠EBD=60°,
∴∠BED=90°﹣60°=30°,
∴EB=2BD=2×2=4m,
又∵∠HBA=∠BAC=30°,
∴∠EBH=∠EBD﹣∠HBD=30°,
∴EH= EB=2m,
∴EF=EH+HF=2+1.5=3.5(m).
答:該支架的邊BE為4m,頂端E到地面的距離EF的長度為3.5m.
【解析】過B作BH⊥EF于點H,在Rt△ABC中,根據(jù)∠BAC=30°,BC=1.5,可求得AB的長度,又AD=1m,可求得BD的長度,在Rt△EBD中解直角三角形求得EB的長度,然后根據(jù)BH⊥EF,求得∠EBH=30°,繼而可求得EH的長度,易得EF=EH+HF的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD繞點A逆時針旋轉(zhuǎn)30°,得到□AB′C′D′(點B′與點B是對應(yīng)點,點C′與點C是對應(yīng)點,點D′與點D是對應(yīng)點),點B′恰好落在BC邊上,則∠C=( )
A.155° B.170° C.105° D.145°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,3秒后,兩點相距15個單位長度.已知點B的速度是點A的速度的4倍(速度單位:單位長度/秒).
(1)求出點A、點B運動的速度,并在數(shù)軸上標(biāo)出A、B兩點從原點出發(fā)運動3秒時的位置;
(2)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?
(3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當(dāng)遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,AE∥CD,CE∥AB,連接DE交AC于點O.
(1)證明:四邊形ADCE為菱形;
(2)證明:DE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形ABCD中,動點F,E分別以相同的速度從D,C兩點同時出發(fā)向C和B運動(任何一個點到達即停止),過點P作PM∥CD交BC于M點,PN∥BC交CD于N點,連接MN,在運動過程中,則下列結(jié)論:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤線段MN的最小值為 .
其中正確的結(jié)論有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是雙曲線y= 在第一象限的分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為斜邊做等腰直角△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y= (k<0)上運動,則k的值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市籃球隊到市一中選拔一名隊員.教練對王亮和李剛兩名同學(xué)進行5次3分球投籃測試,每人每次投10個球,圖記錄的是這兩名同學(xué)5次投籃所投中的個數(shù).
(1)請你根據(jù)圖中的數(shù)據(jù),填寫下表;
姓名 | 平均數(shù) | 眾數(shù) | 方差 |
王亮 | 7 | ||
李剛 | 7 | 2.8 |
(2)你認(rèn)為誰的成績比較穩(wěn)定,為什么?
(3)若你是教練,你打算選誰?簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在平面直角坐標(biāo)系中,點A(3,0),B(0,﹣4),C是x軸上一動點,過C作CD∥AB交y軸于點D.
(1)的值是 .
(2)若以A,B,C,D為頂點的四邊形的面積等于54,求點C的坐標(biāo).
(3)將△AOB繞點A按順時針方向旋轉(zhuǎn)90°得到△AO′B′,設(shè)D的坐標(biāo)為(0,n),當(dāng)點D落在△AO′B′內(nèi)部(包括邊界)時,求n的取值范圍.(直接寫出答案即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com