【題目】如圖,已知銳角∠AOB,射線OC不與OA,OB重合,OM,ON分別平分∠AOC,∠BOC.

(1)OC在∠AOB的內部

①若∠BOC=50°,∠AOC=20°,求∠MON的大小;

②若∠MON=30°,求∠AOB的大。

(2)當射線OC在∠AOB外部,且∠AOB=80°,請直接寫出∠MON的大小.

【答案】(1), ②;(2)

【解析】

(1)根據(jù)角平分線的定義得到,,然后利用,即可得到,即可求解;利用的結論,即可求解;

(2) 根據(jù)角平分線的定義得到,,然后利用,即可得到,即可求解

解:(1) ①∵OMON分別平分∠AOC,∠BOC

,,

②由①可知,

(2) 當射線OCAOB外部時,如下圖示:

OM,ON分別平分∠AOC,∠BOC

,

即:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在△BCF中,點D是邊CF上的一點,過點DADBC,過點BBACDAD于點A,點GBC的中點,點E是線段AD上一點,且∠CDG=∠ABE=∠EBF

1)若∠F60°,∠C45°,BC2,請求出AB的長;

2)求證:CDBF+DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△ADE都是等腰直角三角形,ABAC,ADAE,∠BAC=∠DAE90°.

(1)求證:△ACE≌△ABD;

(2)AC2,EC4DC2,求∠ACD的度數(shù);

(3)(2)的條件下,直接寫出DE的長為   (只填結果,不用寫計算過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A0,2),在x軸上取一點B,連接AB,以A為圓心,任意長為半徑畫弧,分別交OA、AB于點MN,再以MN為圓心,大于MN的長為半徑畫弧,兩弧交于點D,連接AD并延長交x軸于點P.若OPAOAB相似,則點P的坐標為( 。

A. 10B. ,0C. ,0D. 2,0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC中,BC6,DE分別在BC、AC上,且DEACMNBDE的中位線.將線段DEBD2處開始向AC平移,當點D與點C重合時停止運動,則在運動過程中線段MN所掃過的區(qū)域面積為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有正方形ABCD和一個以O為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于M,N.

(1如圖1,若點O與點A重合,則OM與ON的數(shù)量關系是__________________;

(2如圖2,若點O正方形的中心(即兩對角線的交點,則(1中的結論是否仍然成立?請說明理由;

(3如圖3,若點O在正方形的內部(含邊界,當OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?

(4如圖4是點O在正方形外部的一種情況.當OM=ON時,請你就“點O的位置在各種情況下(含外部移動所形成的圖形”提出一個正確的結論.(不必說理

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)150輛自行車,平均每天生產(chǎn)輛,由于各種原因實際每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負):

星期

增減

1)根據(jù)記錄可知前三天共生產(chǎn) 輛;

2)產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn) 輛;

3)該廠實行計劃工資制,每輛車元,超額完成任務每輛獎元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ABAC10,BC12,矩形DEFG中,EF4FG12

1)如圖①,點AFG的中點,FGBC,將矩形DEFG向下平移,直到DEBC重合為止.要研究矩形DEFGABC重疊部分的面積,就要進行分類討論,你認為如何進行分類,寫出你的分類方法(無需求重疊部分的面積).

2)如圖②,點BF重合,E、B、C在同一直線上,將矩形DEFG向右平移,直到點EC重合為止.設矩形DEFGABC重疊部分的面積為y,平移的距離為x

yx的函數(shù)關系式,并寫出自變量的取值范圍;

在給定的平面直角坐標系中畫出yx的大致圖象,并在圖象上標注出關鍵點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形 OABC A03),C- 1,0. OABC 繞原點順時針旋轉 900,得到矩形 OA’B’C’.解答下列問題:

1)求出直線 BB’的函數(shù)解析式;

2)直線 BB’ x 軸交于點 M、與 y 軸交于點N,拋物線 y = ax2+ bx + c 的圖象經(jīng)過點C、M、N,求拋物線的函數(shù)解析式.

3)將MON 沿直線 MN 翻折,點 O 落在點P 處,請你判斷點 P 是否在拋物線上,說明理由.

查看答案和解析>>

同步練習冊答案