【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形AOB的直角頂點(diǎn)A在第四象限,頂點(diǎn)B0,-2),點(diǎn)C0,1),點(diǎn)D在邊AB上,連接CDOA于點(diǎn)E,反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn)D,若△ADE和△OCE的面積相等,則k的值為___________.

【答案】

【解析】

先過(guò)點(diǎn)DDFOBF,構(gòu)造等腰直角三角形BDF,再根據(jù)ADEOCE的面積相等,得出BCDAOB的面積相等,最后根據(jù)BCD的面積求得點(diǎn)D的坐標(biāo),即可得出k的值.

解:如圖,過(guò)點(diǎn)DDFOBF,

∵等腰直角三角形AOB的頂點(diǎn)B0-2),點(diǎn)C01),
OB=2,AO=AB=,BC=3,DF=BF
∴△AOB的面積=

又∵△ADEOCE的面積相等,
∴△BCDAOB的面積相等,
∴△BCD的面積為1,

解得

∵反比例函數(shù)y的圖象經(jīng)過(guò)點(diǎn)D,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】莒南縣欲從某師范院校招聘一名“特崗教師”,對(duì)甲、乙、丙、丁四位候選人進(jìn)行了面試和筆試,他們的成績(jī)?nèi)绫恚?/span>

候選人

測(cè)試成績(jī)

面試

86

91

90

83

筆試

90

83

83

92

根據(jù)錄用程序,作為人民教師面試的成績(jī)應(yīng)該比筆試的成績(jī)更重要,并分別賦予它們64的權(quán).根據(jù)四人各自的平均成績(jī),你認(rèn)為將錄取( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校數(shù)學(xué)課外小組,在坐標(biāo)紙上為學(xué)校的一塊空地設(shè)計(jì)植樹(shù)方案如下:第k棵樹(shù)種植在點(diǎn)Pk(xk,yk)處,其中x1=1y1=1,當(dāng)k≥2時(shí),, ,[a]表示非負(fù)實(shí)數(shù)a的整數(shù)部分,例如[2.6]=2,[0.2]=0.按此方案,則第2018棵樹(shù)種植點(diǎn)的坐標(biāo)為( )

A.32018B.2,2019C.2403D.3,404

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將平行四邊形ABCD折疊,使頂點(diǎn)D落在AB邊上的點(diǎn)E處,折痕為AF,下列說(shuō)法中不正確的是(  )

A.EFBCB.EFAEC.BECFD.AFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個(gè)條件后,仍無(wú)法判定△ADF≌△CBE的是(

A. ∠A=∠C B. AD∥BC C. BE=DF D. AD=CB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)DBC上一動(dòng)點(diǎn),連接AD,將ACD沿AD折疊,點(diǎn)C落在點(diǎn)E處,連接DEAB于點(diǎn)F,當(dāng)DEB是直角三角形時(shí),DF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情景:如圖1,在等腰直角三角形ABC中∠ACB90°,BCa.將AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BD,連接CD,過(guò)點(diǎn)D作△BCDBC邊上的高DE

易證△ABC≌△BDE,從而得到△BCD的面積為

簡(jiǎn)單應(yīng)用:如圖2,在RtABC中,∠ACB90°,BCa,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BD,連接CD,用含a的代數(shù)式表示△BCD的面積,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)EC在線(xiàn)段BF上,BEECCF,ABDE,∠ACB=∠F

(1)求證:△ABC≌△DEF;

(2)求證:四邊形ACFD為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形紙片ABCD中,AB=m,AD=n,將兩張邊長(zhǎng)分別為64的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長(zhǎng)方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2

1)在圖1中,EF=___BF=____;(用含m的式子表示)
2)請(qǐng)用含mn的式子表示圖1,圖2中的S1,S2,若m-n=2,請(qǐng)問(wèn)S2-S1的值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案