如圖所示,在△ABC中,∠C=90°,AB=16cm,BC的垂直平分線交AB于點D,則點C與點D的距離是
8
8
 cm.
分析:首先連接CD,由BC的垂直平分線交AB于點D,根據(jù)線段垂直平分線的性質(zhì),即可求得CD=BD,又由∠C=90°,根據(jù)等角的余角相等,即可求得∠A=∠ACD,則可得AD=CD,繼而可求得CD=
1
2
AB.
解答:解:連接CD,
∵BC的垂直平分線交AB于點D,
∴CD=BD,
∴∠DCB=∠B,
∵∠C=90°,
∴∠A+∠B=90°,∠ACD+∠DCB=90°,
∴∠A=∠ACD,
∴AD=CD,
∴CD=AD=BD=
1
2
AB=
1
2
×16=8(cm).
故答案為:8.
點評:此題考查了線段垂直平分線的性質(zhì)、等腰三角形的判定與性質(zhì)以及直角三角形的性質(zhì).此題難度不大,解題的關(guān)鍵是準確作出輔助線,證得CD=AD=BD.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習冊答案