精英家教網 > 初中數學 > 題目詳情
15、由x<y可得,下列不等式中錯誤的是(  )
分析:看各不等式是加(減)什么數,或乘(除以)哪個數得到的,用不用變號.
解答:解:A、不等式兩邊都減3,不等號的方向不變,正確;
B、不等式兩邊都加1,不等號的方向不變,正確;
C、不等式兩邊都乘2,不等號的方向不變,錯誤;
D、不等式兩邊都乘-3,不等號的方向改變,正確;
故選C.
點評:不等式的性質運用時注意兩邊同時乘以或除以同一個數或式子時不等號的方向是否變化.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

下列命題正確的有
②、④
②、④

①方程kx2-x-2=0是一元二次方程;
②x=1與方程x2=1不是同解方程;
③方程x2=x與方程x=1是同解方程; 
④由(x+1)(x-1)=3可得x=±2.

查看答案和解析>>

科目:初中數學 來源: 題型:

請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
FAE
FAE

又AG=AE,AF=AF
∴△GAF≌
△EAF
△EAF

GF
GF
=EF,故DE+BF=EF.
(2)運用(1)解答中所積累的經驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.
(3)類比(1)證明思想完成下列問題:在同一平面內,將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若△ABC固定不動,△AFG繞點A旋轉,AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉過程中,等式BD2+CE2=DE2始終成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀下列材料:
如圖1,在四邊形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求證:CD=AB.
小剛是這樣思考的:由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求證及特殊角度數可聯(lián)想到構造特殊三角形.即過點A作AE⊥AB交BC的延長線于點E,則AB=AE,∠E=∠D.
在△ADC與△CEA中,
∠D=∠E
∠DAC=∠ECA=75°
AC=CA

∴△ADC≌△CEA,
得CD=AE=AB.
請你參考小剛同學思考問題的方法,解決下面問題:

如圖2,在四邊形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,請問:CD與AB是否相等?若相等,請你給出證明;若不相等,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010-2011學年江蘇省南通地區(qū)八年級上學期期末數學試卷(帶解析) 題型:解答題

已知△ABC,利用直尺和圓規(guī),根據下列要求作圖(保留作圖痕跡,不要求寫作法)
并根據要求填空:
(1)作∠ABC的平分線BD交AC于點D;
(2)作線段BD的垂直平分線交AB于點E,交BC于點F.
由(1)、(2)可得:線段EF與線段BD的關系為            

查看答案和解析>>

科目:初中數學 來源:2012屆江蘇省南通地區(qū)八年級上學期期末數學試卷(解析版) 題型:解答題

已知△ABC,利用直尺和圓規(guī),根據下列要求作圖(保留作圖痕跡,不要求寫作法)

并根據要求填空:

(1)作∠ABC的平分線BD交AC于點D;

(2)作線段BD的垂直平分線交AB于點E,交BC于點F.

由(1)、(2)可得:線段EF與線段BD的關系為            

 

 

查看答案和解析>>

同步練習冊答案