如圖,某邊防巡邏隊在一個海濱浴場岸邊的A點處發(fā)現(xiàn)海中的B點有人求救,便立即派
三名救生員前去營救.1號救生員從A點直接跳入海中;2號救生員沿岸邊(岸邊看成是
直線)向前跑到C點,再跳入海中;3號救生員沿岸邊向前跑300米到離B點最近的D
點,再跳入海中。救生員在岸上跑的速度都是6米/秒,在水中游泳的速度都是2米/秒。
若∠BAD=45°,∠BCD=60°,三名救生員同時從A點出發(fā),請說明誰先到達營救地點B。
(參考數(shù)據(jù),
解:在中,。
。   。
中,
。 。
1號救生員到達B點所用的時間為:(秒),
2號救生員到達B點所用的時間為:(秒),   
3號救生員到達B點所用的時間為(秒),
,號救生員先到達營救地點B。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),在直角梯形OABC中,BC∥OA,∠OCB=90°,OA=6,AB=5,cos∠OAB=

小題1:寫出頂點A、B、C的坐標;
小題2:如圖(2),點P為AB邊上的動點(P與A、B不重合),PM⊥OA,PN⊥OC,垂足分別為M,N.設PM=x,四邊形OMPN的面積為y.
①求出y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
②是否存在一點P,使得四邊形OMPN的面積恰好等于梯形OABC的面積的一半?如果存在,求出點P的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分6分)如圖,為測樓房BE的高,在距樓底部30米的D處,用高1.2米的
測角儀AD測得樓頂B的仰角為60°,求樓房BE的高。(精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將半徑為10cm,弧長為10的扇形圍成圓錐(接縫忽略不計),那么圓錐的母線與圓錐底
面的夾角的正弦值是         .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,張華同學在學校某建筑物的C點處測得旗桿頂部A點的仰角為,旗桿底部
點的俯角為.若旗桿底部點到建筑物的水平距離BE="9" 米,旗桿臺階高1米,
則旗桿頂點離地面的高度為---米(結果保留根號)。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果∠A是銳角,且,那么∠A=
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在△ABC中,∠C=90°,AC=9,sinB,則AB
A.15B.12C.9D.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•廣元)如圖,AB是⊙O的直徑,BC切⊙O于點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.
(1)試判斷∠CBD與∠CEB是否相等,并證明你的結論;
(2)求證:=;
(3)若BC=AB,求tan∠CDF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分8分)通過學習三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖①在△ABC中,AB=AC,頂角A的正對記作sad A,這時sad A.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad 60°=           .
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
(3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

 

 
 A

 

查看答案和解析>>

同步練習冊答案