【題目】如圖,正方形ABCD的四個頂點分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.

探究一:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設(shè)存在正方形EFGH,它的面積是正方形ABCD的2倍.

因為正方形ABCD的面積為1,則正方形EFGH的面積為2,

所以EF=FG=GH=HE=,設(shè)EB=x,則BF=﹣x,

∵Rt△AEB≌Rt△BFC

∴BF=AE=﹣x

在Rt△AEB中,由勾股定理,得

x2+(﹣x)2=12

解得,x1=x2=

∴BE=BF,即點B是EF的中點.

同理,點C,D,A分別是FG,GH,HE的中點.

所以,存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍

探究二:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過程)

探究三:巳知邊長為1的正方形ABCD,   一個外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)

探究四:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過程)

【答案】不存在,詳見解析

【解析】

探究二,根據(jù)探究一的解答過程、運用一元二次方程計算即可;探究三,根據(jù)探究一的解答過程、運用一元二次方程根的判別式解答;探究四,根據(jù)探究一的解答過程、運用一元二次方程根的判別式解答.

探究二:因為正方形ABCD的面積為1,則正方形EFGH的面積為3,

所以EF=FG=GH=HE=,設(shè)EB=x,則BF=x,

RtAEBRtBFC,

BF=AE=x,

RtAEB中,由勾股定理,得,

x2+(x2=12,

整理得x2x+1=0,

b2﹣4ac=3﹣4<0,

此方程無解,

不存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍;

探究三:因為正方形ABCD的面積為1,則正方形EFGH的面積為4,

所以EF=FG=GH=HE=2,設(shè)EB=x,則BF=2﹣x,

RtAEBRtBFC

BF=AE=2﹣x,

RtAEB中,由勾股定理,得,

x2+(2﹣x2=12

整理得2x2﹣4x+3=0,

b2﹣4ac=16﹣24<0,

此方程無解,

不存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍,

故答案為:不存在;

探究四:因為正方形ABCD的面積為1,則正方形EFGH的面積為n

所以EF=FG=GH=HE=,設(shè)EB=x,則BF=x,

RtAEBRtBFC,

BF=AE=x

RtAEB中,由勾股定理,得,

x2+(x2=12,

整理得2x2﹣2x+n﹣1=0,

b2﹣4ac=8﹣4n<0,

此方程無解,

不存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級有24個班,共1 000名學(xué)生,他們參加了一次數(shù)學(xué)測試.學(xué)校統(tǒng)計了所有學(xué)生的成績,得到下列統(tǒng)計圖.

1)求該校九年級學(xué)生本次數(shù)學(xué)測試成績的平均數(shù);

2)下列關(guān)于本次數(shù)學(xué)測試說法正確的是(

A.九年級學(xué)生成績的眾數(shù)與平均數(shù)相等

B.九年級學(xué)生成績的中位數(shù)與平均數(shù)相等

C.隨機(jī)抽取一個班,該班學(xué)生成績的平均數(shù)等于九年級學(xué)生成績的平均數(shù)

D.隨機(jī)抽取300名學(xué)生,可以用他們成績的平均數(shù)估計九年級學(xué)生成績的平均數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設(shè)快車離乙地的距離為y1km),慢車離乙地的距離為y2km),慢車行駛時間為xh),兩車之間的距離為skm).y1y2x的函數(shù)關(guān)系圖象如圖1所示,sx的函數(shù)關(guān)系圖象如圖2所示.則下列判斷:①圖1a3;②當(dāng)xh時,兩車相遇;③當(dāng)x時,兩車相距60km;④圖2C點坐標(biāo)為(3,180);⑤當(dāng)xhh時,兩車相距200km.其中正確的有_____(請寫出所有正確判斷的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在小正方形的邊長均為1的方格紙中,有線段和線段,點均在小正方形的頂點上.

(1)在方格紙中畫出以為斜邊的直角三角形,點E在小正方形的頂點上,且的面積為5;

(2)在方格紙中畫出以為一邊的,點在小正方形的頂點上,的面積為4,射線與射線交于點,且,連接,請直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅用一塊長為2m,寬為1.2m的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)

(1)若長方體底面面積為1.28m2,求裁掉的正方形邊長;

(2)若要求制作的長方體的底面長不大于底面寬的3倍,并將容器進(jìn)行防銹處理,側(cè)面每平方米的費用為50元,底面每平方米的費用為200元,裁掉的正方形邊長多大時,總費用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2.

(1)第一批飲料進(jìn)貨單價多少元?

(2)若二次購進(jìn)飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為(  )

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為半圓內(nèi)一點,為圓心,直徑長為,,將繞圓心逆時針旋轉(zhuǎn)至,點上,則邊掃過區(qū)域(圖中陰影部分)的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△AOB和△A1OB1是以點O為位似中心的位似圖形,且△AOB和△A1OB1的周長之比為12,點B的坐標(biāo)為(-12),則點B1的坐標(biāo)為( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案