【題目】如圖,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,點(diǎn)E在AD上,點(diǎn)F在DC上,且∠BEF=∠A.
(1)∠BEF=(用含α的代數(shù)式表示);
(2)當(dāng)AB=AD時(shí),猜想線(xiàn)段EB、EF的數(shù)量關(guān)系,并證明你的猜想;
(3)當(dāng)AB≠AD時(shí),將“點(diǎn)E在AD上”改為“點(diǎn)E在AD的延長(zhǎng)線(xiàn)上,且AE>AB,AB=mDE,AD=nDE”,其他條件不變(如圖),求 的值(用含m,n的代數(shù)式表示)
【答案】
(1)解:∵梯形ABCD中,AD∥BC,
∴∠A+∠ABC=180°,
∴∠A=180°﹣∠ABC=180°﹣2α,
又∵∠BEF=∠A,
∴∠BEF=∠A=180°﹣2α;
故答案為:180°﹣2α;
(2)
EB=EF.
證明:連接BD交EF于點(diǎn)O,連接BF.
∵AD∥BC,
∴∠A=180°﹣∠ABC=180°﹣2α,∠ADC=180°﹣∠C=180°﹣α.
∵AB=AD,
∴∠ADB= (180°﹣∠A)=α,
∴∠BDC=∠ADC﹣∠ADB=180°﹣2α,
由(1)得:∠BEF=180°﹣2α=∠BDC,
又∵∠EOB=∠DOF,
∴△EOB∽△DOF,
∴ ,
即 ,
∵∠EOD=∠BOF,
∴△EOD∽△BOF,
∴∠EFB=∠EDO=α,
∴∠EBF=180°﹣∠BEF﹣∠EFB=α=∠EFB,
∴EB=EF;
(3)
解:延長(zhǎng)AB至G,使AG=AE,連接GE,
則∠G=∠AEG= = =α,
∵AD∥BC,
∴∠EDF=∠C=α,∠GBC=∠A,∠DEB=∠EBC,
∴∠EDF=∠G,
∵∠BEF=∠A,
∴∠BEF=∠GBC,
∴∠GBC+∠EBC=∠DEB+∠BEF,
即∠EBG=∠FED,
∴△DEF∽△GBE,
∴ ,
∵AB=mDE,AD=nDE,
∴AG=AE=(n+1)DE,
∴BG=AG﹣AB=(n+1)DE﹣mDE=(n+1﹣m)DE,
∴ = =n+1﹣m.
【解析】【分 析】(1)由梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,根據(jù)平行線(xiàn)的性質(zhì),易求得∠A的度數(shù),又由∠BEF=∠A,即可求得∠BEF的度 數(shù);(2)首先連接BD交EF于點(diǎn)O,連接BF,由AB=AD,易證得△EOB∽△DOF,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,可得 ,繼而可證得△EOD∽△BOF,又由相似三角形的對(duì)應(yīng)角相等,易得∠EBF=∠EFB=α,即可得EB=EF;(3)首先延長(zhǎng)AB至G,使AG=AE,連接BE,GE,易證得△DEF∽△GBE,然后由相似三角形的對(duì)應(yīng)邊成比例,即可求得 的值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解梯形的定義的相關(guān)知識(shí),掌握一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯形,以及對(duì)相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B、C在數(shù)軸上表示的數(shù)分別為a、b、c,且OA+OB=OC,則下列結(jié)論中:
①abc<0;②a(b+c)>0;③a﹣c=b;④ .
其中正確的個(gè)數(shù)有 ( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先觀(guān)察表格,再解決問(wèn)題.
項(xiàng)數(shù) | 第一項(xiàng) | 前兩項(xiàng) | 前三項(xiàng) | 前四項(xiàng) | 前五項(xiàng) | |
式子① | ||||||
式子② | ||||||
兩個(gè)式子的比 |
________(直接寫(xiě)出結(jié)果);
計(jì)算的值;
計(jì)算的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中(請(qǐng)補(bǔ)畫(huà)出必要的圖形),為坐標(biāo)原點(diǎn),直線(xiàn)y=-2x+4與、軸分別交于、兩點(diǎn),過(guò)線(xiàn)段的中點(diǎn)作軸的垂線(xiàn),分別與直線(xiàn)交于點(diǎn),與直線(xiàn)y=x+n交于點(diǎn).
(1)直接寫(xiě)出點(diǎn)A、B、C、的坐標(biāo):A(____________),B(____________),C(_____________),D(____________);
(2)若的面積等于1,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的有理數(shù)為﹣6,點(diǎn)B表示的有理數(shù)為6,點(diǎn)P從點(diǎn)A出發(fā)以每秒4個(gè)單位長(zhǎng)度的速度在數(shù)軸上由A向B運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B后立即返回,仍然以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)至點(diǎn)A停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).
(1)求t=1時(shí)點(diǎn)P表示的有理數(shù);
(2)求點(diǎn)P與點(diǎn)B重合時(shí)的t值;
(3)在點(diǎn)P沿?cái)?shù)軸由點(diǎn)A到點(diǎn)B再回到點(diǎn)A的運(yùn)動(dòng)過(guò)程中,求點(diǎn)P與點(diǎn)A的距離(用含t的代數(shù)式表示);
(4)當(dāng)點(diǎn)P表示的有理數(shù)與原點(diǎn)的距離是2個(gè)單位長(zhǎng)度時(shí),請(qǐng)求出所有滿(mǎn)足條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別為-1,0,3,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)MN的長(zhǎng)為 ;
(2)如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是8?若存在,直接寫(xiě)出x的值;若不存在,請(qǐng)說(shuō)明理由.
(4)如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)都在5×5的網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)的格點(diǎn)上,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△A′B′C的位置,且A′、B′仍落在格點(diǎn)上,則線(xiàn)段AC掃過(guò)的扇形所圍成的圓錐體的底面半徑是單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀(guān)察下面的變形規(guī)律:
;;;….
解答下面的問(wèn)題:
(1)仿照上面的格式請(qǐng)寫(xiě)出= ;
(2)若n為正整數(shù),請(qǐng)你猜想= ;
(3)基礎(chǔ)應(yīng)用:計(jì)算:.
(4)拓展應(yīng)用1:解方程: =2016
(5)拓展應(yīng)用2:計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名足球守門(mén)員練習(xí)折返跑,從球門(mén)線(xiàn)出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門(mén)員最后是否回到了球門(mén)線(xiàn)的位置?
(2)在練習(xí)過(guò)程中,守門(mén)員離開(kāi)球門(mén)最遠(yuǎn)距離是多少米?
(3)守門(mén)員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com