【題目】某果園有100棵橙子樹,平均每棵結(jié)600個橙子.現(xiàn)準備多種一些橙子樹以提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就要減少.根據(jù)經(jīng)驗估計,每增種1棵樹,平均每棵樹就少結(jié)5個橙子.設(shè)果園增種x棵橙子樹,果園橙子的總產(chǎn)量為y個.
(1)求y與x之間的關(guān)系式;
(2)增種多少棵橙子樹,可以使橙子的總產(chǎn)量在60 420個以上?
【答案】(1)y=600-5x(0≤x<120);(2)7到13棵
【解析】
(1)根據(jù)增種1棵樹,平均每棵樹就會少結(jié)5個橙子列式即可;(2)根據(jù)題意列出函數(shù)解析式,然后根據(jù)函數(shù)關(guān)系式y=-5x2+100x+60000=60420,結(jié)合一元二次方程解法得出即可.
解:(1)平均每棵樹結(jié)的橙子個數(shù)y(個)與x之間的關(guān)系為:
y=600-5x(0≤x<120);
(2)設(shè)果園多種x棵橙子樹時,可使橙子的總產(chǎn)量為w,
則w=(600-5x)(100+x)
=-5x2+100x+60000
當y=-5x2+100x+60000=60420時,
整理得出:x2-20x+84=0,
解得:x1=14,x2=6,
∵拋物線對稱軸為直線x==10,
∴增種7到13棵橙子樹時,可以使果園橙子的總產(chǎn)量在60420個以上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小馬和小聰想用所學(xué)的數(shù)學(xué)知識測量圖書館前小河的寬,測量時,他們選擇河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.35m,BD=7m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;
(2)若點C是弧AB的中點,已知AB=4,求CECP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年10月21日,重慶市第八屆中小學(xué)藝術(shù)工作坊在渝北區(qū)空港新城小學(xué)體育館開幕,來自全重慶市各個區(qū)縣共二十多個工作坊集中展示了自己的藝術(shù)特色.組委會準備為現(xiàn)場展示的參賽選手購買三種紀念品,其中甲紀念品5元/件,乙紀念品7元/件,丙紀念品10元/件.要求購買乙紀念品數(shù)量是丙紀念品數(shù)量的2倍,總費用為346元.若使購買的紀念品總數(shù)最多,則應(yīng)購買紀念品共_____件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,直線EF是⊙O的切線,B是切點.若∠C=80°,∠ADB=54°,則∠CBF=____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a<0<b)的圖像與x軸只有一個交點,下列結(jié)論:①x<0時,y隨x增大而增大;②a+b+c<0;③關(guān)于x的方程ax2+bx+c+2=0有兩個不相等的實數(shù)根.其中所有正確結(jié)論的序號是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點H,點F是上一點,連接AF交CD的延長線于點E.
(1)求證:△AFC∽△ACE;
(2)若AC=5,DC=6,當點F為的中點時,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D,E分別是AB,BC邊上的點,且DE∥AC,若,,則△ACD的面積為( )
A. 64 B. 72 C. 80 D. 96
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)自變量的值和它對應(yīng)的函數(shù)值如下表所示:
0 | 1 | 2 | 3 | 4 | |||
3 | 0 | -1 | 0 |
(1)請寫出該二次函數(shù)圖像的開口方向、對稱軸、頂點坐標和的值;
(2)設(shè)該二次函數(shù)圖像與軸的左交點為,它的頂點為,該圖像上點的橫坐標為4,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com