【題目】如圖,已知ABC,以AC為直徑的⊙OAB于點D,點E為弧AD的中點,連接CEAB于點F,且BF=BC

1)求證:BC是⊙O的切線;

2)若⊙O的半徑為2,=,求CE的長.

【答案】1)證明見詳解;(2.

【解析】

1)連接AE,求出∠EAD+AFE=90°,推出∠BCE=BFC,∠EAD=ACE,求出∠BCE+ACE=90°,根據(jù)切線的判定推出即可.
2)根據(jù)AC=4=,求出BC=3,AB=5,BF=3,AF=2,根據(jù)∠EAD=ACE,∠E=E證△AEF∽△CEA,推出EC=2EA,設EA=xEC=2x,由勾股定理得出,求出即可.

1)答:BC與⊙O相切.
證明:連接AE
AC是⊙O的直徑
∴∠E=90°,
∴∠EAD+AFE=90°,
BF=BC
∴∠BCE=BFC=AFE,
E為弧AD中點,
∴∠EAD=ACE,
∴∠BCE+ACE=EAD+AFE=90°
ACBC,
AC為直徑,
BC是⊙O的切線.

2)解:∵⊙O的半為2,
AC=4,
=

BC=3,AB=5,
BF=3,AF=5-3=2,
∵∠EAD=ACE,∠E=E,
∴△AEF∽△CEA,

EC=2EA
EA=x,則有EC=2x,
由勾股定理得:

(負數(shù)舍去),
.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,拋物線的對稱軸為直線,將直線繞著點順時針旋轉的度數(shù)后與該拋物線交于兩點(點在點的左側),點是該拋物線上一點

1)若,求直線的函數(shù)表達式

2)若點將線段分成的兩部分,求點的坐標

3)如圖②,在(1)的條件下,若點軸左側,過點作直線軸,點是直線上一點,且位于軸左側,當以,,為頂點的三角形與相似時,求的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P為⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點A、B(不與P、Q重合),連接AP、BP,若∠APQ=BPQ

1)如圖1,當∠APQ=45°,AP=1BP=2時,求⊙O的半徑。

2)如圖2,連接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,設∠NOP=α,∠OPN=β,若AB平行于ON,探究αβ的數(shù)量關系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是二次函數(shù)圖像上的任意一點,點軸上.

1)以點為圓心,長為半徑作.

①直線經(jīng)過點且與軸平行,判斷與直線的位置關系,并說明理由.

②若軸相切,求出點坐標;

2、、是這條拋物線上的三點,若線段、的長滿足,則稱、的和諧點,記做.已知、的橫坐標分別是,,直接寫出的坐標_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠ACD90°,ACDC,MN是過點A的直線,DBMN于點B

1)如圖,求證:BD+ABBC;

2)直線MN繞點A旋轉,在旋轉過程中,當∠BCD30°,BD時,求BC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,∠ABC=90°,已知AB=3,BC=4,點Q是線段AC上的一個動點,過點QAC的垂線交直線AB于點P,當△PQB為等腰三角形時,線段AP的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,六個小朋友圍成一圈(面向圈內)做傳球游戲,規(guī)定:球不得傳給自己,也不得傳給左手邊的人.若游戲中傳球和接球都沒有失誤.

若由開始一次傳球,則接到球的概率分別是 、 ;

若增加限制條件:也不得傳給右手邊的人”.現(xiàn)在球已傳到手上,在下面的樹狀圖2

畫出兩次傳球的全部可能情況,并求出球又傳到手上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個柱子,點恰好在水面中心,安裝在柱子頂端處的圓形噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過的任意平面上,水流噴出的高度與水平距離之間的關系如圖所示,建立平面直角坐標系,右邊拋物線的關系式為.請完成下列問題:

1)將化為的形式,并寫出噴出的水流距水平面的最大高度是多少米;

2)寫出左邊那條拋物線的表達式;

3)不計其他因素,若要使噴出的水流落在池內,水池的直徑至少要多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關系如圖所示.

(1)求之間的函數(shù)關系式,并寫出自變量的取值范圍;

(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案