【題目】汽車(chē)的“燃油效率”是指汽車(chē)每消耗1升汽油行駛的最大公里數(shù)(單位:),如圖描述了甲、乙、丙三輛汽車(chē)在不同速度下的燃油效率情況,下列敘述正確的是( )
A.當(dāng)行駛速度為時(shí),每消耗1升汽油,甲車(chē)能行駛
B.消耗1升汽油,丙車(chē)最多可行駛
C.當(dāng)行駛速度為時(shí),每消耗1升汽油,乙車(chē)和丙車(chē)行駛的最大公里數(shù)相同
D.當(dāng)行駛速度為時(shí),若行駛相同的路程,丙車(chē)消耗的汽油最少
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(2,3)和點(diǎn)B(0,2),點(diǎn)A在反比例函數(shù)y= 的圖象上.作射線AB,再將射線AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)45°,交反比例函數(shù)圖象于點(diǎn)C,則點(diǎn)C的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司在抗震救災(zāi)期間承擔(dān)40 000頂救災(zāi)帳篷的生產(chǎn)任務(wù),分為A、B、C、D四種型號(hào),它們的數(shù)量百分比和每天單獨(dú)生產(chǎn)各種型號(hào)帳篷的數(shù)量如圖所示:
根據(jù)以上信息,下列判斷錯(cuò)誤的是( )
A. 其中的D型帳篷占帳篷總數(shù)的10%
B. 單獨(dú)生產(chǎn)B型帳篷的天數(shù)是單獨(dú)生產(chǎn)C型帳篷天數(shù)的3倍
C. 單獨(dú)生產(chǎn)A型帳篷與單獨(dú)生產(chǎn)D型帳篷的天數(shù)相等
D. 單獨(dú)生產(chǎn)B型帳篷的天數(shù)是單獨(dú)生產(chǎn)A型帳篷天數(shù)的2倍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,AC=BC,點(diǎn)D是AC延長(zhǎng)線上一點(diǎn),連結(jié)BD.將繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到,延長(zhǎng)AE交BD于F.
(1)依據(jù)題意補(bǔ)全圖1;
(2)判斷AE與BD的位置關(guān)系,說(shuō)明理由;
(3)連結(jié)CF,求的度數(shù).
要想求出的度數(shù),小明經(jīng)過(guò)思考,得到了以下幾種想法:
想法1:在AF上取一點(diǎn)G,使得AG=BF,需要先證明,然后再證明是等腰直角三角形.
想法2:取AB的中點(diǎn)O,連接OC,OF,只需要利用圓的性質(zhì)證明.
想法3:將繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,得到,只需證明是等腰直角三角形.
請(qǐng)你參考上面的想法,幫助小明求解.(寫(xiě)出一種方法即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形紙片,,、分別是邊、的中點(diǎn),把邊向上翻折,使點(diǎn)恰好落在上的點(diǎn)處,為折痕,且交于點(diǎn),則的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)“隔離直線”給出如下定義:
點(diǎn)P(x,m)是圖形G1上的任意一點(diǎn),點(diǎn)Q(x,n)是圖形G2上的任意一點(diǎn),若存在直線l:kx+b(k≠0)滿足m≤kx+b且n≥kx+b,則稱直線l:y=kx+b(k≠0)是圖形G1與G2的“隔離直線”.
如圖,直線l:y=-x-4是函數(shù)y=(x<0)的圖象與正方形OABC的一條“隔離直線”.
(1)在直線y1=-2x,y2=3x+1,y3=-x+3中,是如圖函數(shù)y=(x<0)的圖象與正方形OABC的“隔離直線”的為y1=-2x;
請(qǐng)你再寫(xiě)出一條符合題意的不同的“隔離直線”的表達(dá)式:y=-3x;
(2)如圖,第一象限的等腰直角三角形EDF的兩腰分別與坐標(biāo)軸平行,直角頂點(diǎn)D的坐標(biāo)是(,1),⊙O的半徑為2.是否存在△EDF與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由;
(3)正方形A1B1C1D1的一邊在y軸上,其它三邊都在y軸的右側(cè),點(diǎn)M(1,t)是此正方形的中心.若存在直線y=2x+b是函數(shù)y=x2-2x-3(0≤x≤4)的圖象與正方形A1B1C1D1的“隔離直線”,請(qǐng)直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=BC,∠ABC=90°.以AB為斜邊作等腰直角三角形ADB.點(diǎn)P是直線DB上一個(gè)動(dòng)點(diǎn),連接AP,作PE⊥AP交BC所在的直線于點(diǎn)E.
(1)如圖1,點(diǎn)P在BD的延長(zhǎng)線上,PE⊥EC,AD=1,直接寫(xiě)出PE的長(zhǎng);
(2)點(diǎn)P在線段BD上(不與B,D重合),依題意,將圖2補(bǔ)全,求證:PA=PE;
(3)點(diǎn)P在DB的延長(zhǎng)線上,依題意,將圖3補(bǔ)全,并判斷PA=PE是否仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O是一點(diǎn),過(guò)點(diǎn)B作⊙O的切線,與AC延長(zhǎng)線交于點(diǎn)D,連接BC,OE//BC交⊙O于點(diǎn)E,連接BE交AC于點(diǎn)H。(1)求證:BE平分∠ABC;(2)連接OD,若BH=BD=2,求OD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于、兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.
(1)求二次函數(shù)的表達(dá)式和直線的表達(dá)式;
(2)點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的垂線,交拋物線于點(diǎn),當(dāng)點(diǎn)在第一象限時(shí),求線段長(zhǎng)度的最大值;
(3)在拋物線上存在異于、的點(diǎn),使中邊上的高為,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com